User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
  Citation Number 4
 Views 143
 Downloands 32
İşitme ve Konuşma Engelli Bireyler İçin İşaret Tanıma Sistemi Geliştirme
2019
Journal:  
Folklor/Edebiyat
Author:  
Abstract:

İşaret dili, el hareketlerinin, parmakların, kolların veya vücut hareketinin oryantasyonu ile konuşanın fikirlerini iletmek için yüz ifadeleriyle eş zamanlı olarak yaptıkları hareketlerdir. İşaret dilleri, son yıllarda tüm araştırmacıların gözdesi konumundadır. Yapılan hareketler sensörler yardımı ile tanınabilmektedir. Ancak, hareket verilerinin bilgisayar sistemlerine aktarılması büyük önem taşımaktadır. Alan yazın incelemesi sonucunda bu yönde yapılan çalışmaların yeterli olmadığı belirlenmiştir. Ayrıca, yapılmış çalışmaların daha çok Amerikan İşaret Dili, İngiliz İşaret Dili ve Arap İşaret Dili yönünde olduğu ve Türk İşaret Dili yönünde yapılan çalışmaların yeterli olmadığı tespit edilmiştir. Bu çalışmada, işitme ve konuşma engelli bireylerin diğer bireyler ile iletişimlerini kolaylaştırabilecek akıllı bir sistem geliştirilmiştir. Bu bağlamda yapılan çalışmanın alan yazındaki bu eksikliğin giderilmesine fayda sağlayacağı düşünülmektedir. Çalışma kapsamında geliştirilen akıllı sistemde, Türk İşaret Dili’nde ses bilimi olarak adlandırılan ve işaretlerin de temelini oluşturan 33 tane temel işaret baz alınmıştır. Bu işaretlerin sistem tarafından tanınabilmesi için Microsoft Kinect v2 sensörü kullanılmıştır. Sistemin altyapısında C# programlama dili ile sınıflandırma algoritmalarından Saklı Markov Modeli ve veritabanı olarak da MongoDB kullanılmıştır. Yapılan vaka çalışması sonucunda 33 temel işaretin %82’inin geliştirilen sistem tarafından doğru bir şekilde tanımlandığı gözlemlenmiştir. Elde edilen doğruluk oranı göz önünde tutularak geliştirilen işaret tanıma sisteminin hem işitme ve konuşma engelli bireylere, hem de diğer bireylere yardımcı olacağı ve aralarındaki iletişim kurma problemini çözeceği düşünülmektedir.

Keywords:

Hearing and Speech Disabilities Signal Recognition System
2019
Journal:  
Folklor/Edebiyat
Author:  
Abstract:

Sign language is the movements they make simultaneously with face expressions to communicate the thoughts of the speaker with the orientation of the movements of the hands, fingers, arms or body movements. Signal languages have become the favourite position of all researchers in recent years. Movements can be recognized with the help of sensors. However, the transfer of movement data to computer systems is of great importance. The results of the summer study have found that the work in this direction is not sufficient. Furthermore, the studies were found that more studies were conducted in the direction of American Sign Language, English Sign Language and Arabic Sign Language, and that the studies were conducted in the direction of Turkish Sign Language were not sufficient. In this study, an intelligent system was developed that could facilitate the communication of hearing and speaking disabled individuals with other individuals. It is believed that the work done in this context will benefit from removing this deficiency in the field. In the smart system developed within the framework of the study, 33 basic signals, called the sound science in the Turkish Sign Language, were founded as the basis of the signals. The Microsoft Kinect v2 sensor has been used to recognize these signs by the system. In the system’s infrastructure, the C# programming language and classification algorithms are hidden Markov Model and MongoDB as a database. The case study found that 82% of 33 core signs were correctly identified by the developed system. It is believed that the signal recognition system developed taking into account the accuracy ratio achieved will help both hearing and speech disabled individuals and other individuals and will solve the problem of communicating between them.

Keywords:

0
2019
Journal:  
Folklor/Edebiyat
Author:  
Citation Owners
Attention!
To view citations of publications, you must access Sobiad from a Member University Network. You can contact the Library and Documentation Department for our institution to become a member of Sobiad.
Off-Campus Access
If you are affiliated with a Sobiad Subscriber organization, you can use Login Panel for external access. You can easily sign up and log in with your corporate e-mail address.
Similar Articles








Folklor/Edebiyat

Field :   Filoloji

Journal Type :   Uluslararası

Metrics
Article : 969
Cite : 2.362
© 2015-2024 Sobiad Citation Index