User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 4
Cyto- and genotoxicity of copper (II) oxide (CuO) nanoparticles in HeLa cells
2023
Journal:  
İstanbul Journal of Pharmacy
Author:  
Abstract:

Background and Aims: Cancer is a widespread disease responsible for the death of millions every year. Different approaches and drugs are in use to treat cancer, however, there is a need for new drugs with low cost, high activity, and low side effect risks. Nanotechnology and nanomaterials are important to develop those drugs. Copper-based nanoparticles (NPs) are shown to have biological activity as the antibacterial, and cytotoxic potential. Copper (II) oxide (CuO) NPs are widely used among Cu-based NPs. Different studies evaluated its anticancer and cytotoxic activity; however, the results are still controversial. Methods: It was planned to characterize the NPs using Transmission Electron Microscopy (TEM) in cell culture medium and distilled water and then to evaluate their cytotoxicity in human cervical cancer cells (HeLa) using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay and neutral red uptake (NRU) assays. As one of the cytotoxicity mechanisms, the DNA damage induction potential was evaluated by Comet assay. Results: The CuO NPs have an average diameter of about 35 nm in distilled water and 39 nm in cell culture medium. The IC50 levels of NPs were 10.7 µg/mL and 6.73 µg/mL by MTT and NRU assays, respectively. The results reveal the NPs dosedependently increased in the DNA damage. The tail moment was 1.3-fold at 3.125 µg/mL, 2.5-fold at 6.25 µg/mL, and 3.8-fold at 12.5 µg/mL. Conclusion: CuO NPs have high cytotoxic activity in HeLa cancerous cells. The induction of DNA damage could be an important step in the induction of cell death. Further in vivo and in vitro studies in need to improve the safety/low toxicity and understand the molecular mechanism of CuO-induced activity.

Keywords:

0
2023
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles










İstanbul Journal of Pharmacy

Field :   Sağlık Bilimleri

Journal Type :   Uluslararası

Metrics
Article : 387
Cite : 503
İstanbul Journal of Pharmacy