User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 25
 Downloands 6
Diagnostic Performance Of Machine Learning Models Based On 18f-fdg Pet/ct Radiomic Features In The Classification Of Solitary Pulmonary Nodules
2022
Journal:  
Molecular Imaging and Radionuclide Therapy
Author:  
Abstract:

Objectives: This study aimed to evaluate the ability of 18fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomic features combined with machine learning methods to distinguish between benign and malignant solitary pulmonary nodules (SPN). Methods: Data of 48 patients with SPN detected on 18F-FDG PET/CT scan were evaluated retrospectively. The texture feature extraction from PET/CT images was performed using an open-source application (LIFEx). Deep learning and classical machine learning algorithms were used to build the models. Final diagnosis was confirmed by pathology and follow-up was accepted as the reference. The performances of the models were assessed by the following metrics: Sensitivity, specificity, accuracy, and area under the receiver operator characteristic curve (AUC). Results: The predictive models provided reasonable performance for the differential diagnosis of SPNs (AUCs ~0.81). The accuracy and AUC of the radiomic models were similar to the visual interpretation. However, when compared to the conventional evaluation, the sensitivity of the deep learning model (88% vs. 83%) and specificity of the classic learning model were higher (86% vs. 79%). Conclusion: Machine learning based on 18F-FDG PET/CT texture features can contribute to the conventional evaluation to distinguish between benign and malignant lung nodules.

Keywords:

2022
Author:  
0
2022
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles










Molecular Imaging and Radionuclide Therapy

Field :   Sağlık Bilimleri

Journal Type :   Uluslararası

Metrics
Article : 142
Cite : 10
© 2015-2024 Sobiad Citation Index