User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 8
Synthesis of Aromatic Conjugated Main Chain Azobenzene Polymers and Their Properties
2019
Journal:  
Celal Bayar Üniversitesi Fen Bilimleri Dergisi
Author:  
Abstract:

Azobenzene polymers have great potential and impact on fundamental and applied research. However little is known about their thermal stability and degradation behaviours. Herein, nine conjugated main chain azobenzene polymers were synthesized using the nitroamine derivatives of some diphenylene compounds such as 4-amino-4′-nitrobiphenyl 1, 4-amino-4′-nitrobiphenyl ether 2 and 4-amino-4′-nitrobiphenyl sulfide 3, and comonomers triphenylamine A, N-methyldiphenyl amine B and triphenylphosphine C via diazo coupling reaction. These heteroatom containing polymers were characterized by 1H- and 31P-NMR, FTIR, UV–Vis and Raman spectroscopy. The thermal stability and degradation behaviour of these polymers were studied by means of TGA technique. Electronic spectra of the polymers recorded in DMF showed two strong maxima at ca. 280 and 380 nm. They were resistant to heat up to 270 °C and, produced 41-61% char under a nitrogen atmosphere at 800 °C. UL 94 burning tests performed for TPU Ravathane® (TPE-U) with added azobenzene polymer revealed that these polymers could be used as an intumescent reactive flame retardant additive, particularly for polyurethanes and elastomers, due to their high char yield at relatively high temperatures (e.g 800 °C). The carbonized materials were further characterized by XRD and SEM/EDX. 

Keywords:

0
2019
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles










Celal Bayar Üniversitesi Fen Bilimleri Dergisi

Field :   Fen Bilimleri ve Matematik; Mühendislik

Journal Type :   Uluslararası

Metrics
Article : 762
Cite : 726
Celal Bayar Üniversitesi Fen Bilimleri Dergisi