User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 12
Research on the Agricultural Pest Identification Mechanism Based on an Intelligent Algorithm
2023
Journal:  
Agriculture
Author:  
Abstract:

: The use of Internet of Things (IoT) technology for real-time monitoring of agricultural pests is an unavoidable trend in the future of intelligent agriculture. This paper aims to address the difficulties in deploying models at the edge of the pest monitoring visual system and the low recognition accuracy. In order to achieve that, a lightweight GCSS-YOLOv5s algorithm is proposed. Firstly, we introduce the lightweight network GhostNet, use the Ghostconv module to replace the traditional convolution, and construct the C3Ghost module based on the CSP structure, drastically reducing the number of model parameters. Secondly, during the feature fusion process, we introduce the content-aware reassembly of features (CARAFE) lightweight up-sampling operator to enhance the feature integration capability of the pests by reducing the impact of redundant features after fusion. Then, we adopt SIoU as the bounding box regression loss function, which enhances the convergence speed and detection accuracy of the model. Finally, the traditional non-maximum suppression (NMS) was improved to Soft-NMS to improve the model’s ability to recognize overlapping pests. According to the experimental results, the mean average precision (mAP) of the GCSS-YOLOv5s model reaches 90.5%. This is achieved with a 44% reduction in the number of parameters and a 7.4 G reduction in computation volume compared to the original model. The method significantly reduces the model’s resource requirements while maintaining accuracy, which offers a specific theoretical foundation and technological reference for the future field of intelligent monitoring.

Keywords:

0
2023
Journal:  
Agriculture
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Agriculture

Journal Type :   Uluslararası

Metrics
Article : 9.836
Cite : 6.453
2023 Impact : 0.04
Agriculture