User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 13
 Downloands 3
RECYCLING OF CARBONE OXIDES (CO, CO2) CONVERSION INTO METHANOL AT ATMOSPHERIC PRESSURE OVER MECHANOCHEMICAL ACHTIVATED CuO-ZnO-Al2O3 CATALYST
2016
Journal:  
EUREKA: Physics and Engineering
Author:  
Abstract:

The catalytic process for methanol production by synthesis gas conversion under the conditions of mechanochemical activation (MCA) of copper-zinc-aluminum oxide catalyst in the temperature range 160–280 °C at a pressure of 0.1 MPa are investigated. The use of mechanical action force is one of the promising ways to improve the activity of heterogeneous catalysts designed to simplify the manufacturing process lines, improving the efficiency of catalytic processes and reduce the cost of the target product. Given the importance of technology for methanol production on copper-zinc-aluminum oxide catalysts and high demand for methanol in the world [1–3], clarification of the peculiarities of the process of methanol production by synthesis gas conversion in terms of mechanical load on the catalyst is important in scientific and applied ways. It is established that specific catalytic activity, performance of methanol synthesis catalyst and the conversion of initial reagents are increased in the conditions of mechanochemical activation, because of the increasing concentration of defects and formation of additional active centers. It is revealed that mechanochemical treatment of copper-zinc-aluminum oxide catalyst can reduce reaction initiation temperature and optimum temperature synthesis by 20–30 °C, and increase the maximum performance of the catalytic system. Increase of the catalyst activity under mechanical stress is explored by increase of defect concentration of crystal lattice of the catalyst, as confirmed by the tests of catalyst surface structure by scanning electron microscopy, Raman spectroscopy and X-ray analysis. A new effective method for synthesis gas conversion into the methanol under conditions of mechanochemical activation of the catalyst can be used in industry as an alternative to methanol production at high pressures.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles










EUREKA: Physics and Engineering

Field :   Mühendislik

Journal Type :   Uluslararası

Metrics
Article : 490
Cite : 293
2023 Impact : 0.242
EUREKA: Physics and Engineering