User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 ASOS INDEKS
  Citation Number 1
 Views 8
ENERGY ANALYSIS FOR AN AIR-CONDITIONING SYSTEM OF A COMMERCIAL AIRCRAFT: CASE STUDY FOR AIRBUS A330
2016
Journal:  
International Journal of Energy Applications and Technologies
Author:  
Abstract:

The regulation of temperature, pressure, humidity and oxygen intensity of an aircraft cabin is crucial for the flight conditions of a commercial aircraft. Lack of oxygen, lower temperature and pressure induce some health problems for passengers on board. For this reason, hot and pressurized air supplied from aircraft engine compressor section is conditioned in the air-conditioning packages to present comfortable ambience inside of the aircraft cabin as well as cooling of electric components. In this study, an air-conditioning system of Airbus A330 as a commercial aircraft has been investigated at the altitude of 11000 m for 289 people on board under the flight conditions. At this altitude for the aircraft cruising with 871 km/h (Ma = 0.82), cooling loads of cockpit (crew station), passenger cabin and other appliances needed cooling in the aircraft have been calculated. The parameters affecting the cooling load are mainly temperature, pressure and air intensity of aircraft inside and atmospheric outside. In the calculation of the cooling loads, generated heat and heat loss have been considered. For the generated heat value, heat generation by passengers, cabin crew, illumination systems, other equipment and solar radiation have been assumedly calculated. The heat loss from the aircraft fuselage at 20 °C cabin to the outside of the aircraft at -56.5 °C has been found. Heat transfer to meet the fresh air need inside the aircraft has been taken into account. Finally, the obtained cooling loads are 7.4 kW for the maximum value and 5.1 kW for the minimum value at these aforementioned conditions. The maximum and minimum values have been obtained for the daytime and the night time depending on solar radiation, respectively. In the upcoming study, energy analysis is going to be combined with the exergy analysis and the appropriate air-conditioning system for the optimum energy consumption will be evaluated.

Keywords:

Citation Owners
Attention!
To view citations of publications, you must access Sobiad from a Member University Network. You can contact the Library and Documentation Department for our institution to become a member of Sobiad.
Off-Campus Access
If you are affiliated with a Sobiad Subscriber organization, you can use Login Panel for external access. You can easily sign up and log in with your corporate e-mail address.
Similar Articles










International Journal of Energy Applications and Technologies

Journal Type :   Uluslararası

International Journal of Energy Applications and Technologies