User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 7
 Downloands 1
Vibration spectra of polar mixing optical phonon states and Fröhlich electron-phonon coupling behaviors in a wurtzite ZnO quantum dot
2010
Journal:  
Turkish Journal of Physics
Author:  
Abstract:

Based on the dielectric continuum model and Loudon's uniaxial crystal model, the interface-optical-propagating (IO-PR) mixing phonon states of a quasi-zero-dimensional (Q0D) wurtzite cylindrical quantum dot (QD) are investigated. It is found that there are two types of IO-PR mixing phonon modes, i.e. r-IO/z-PR mixing modes and the z-IO/r-PR mixing modes coexisting in Q0D wurtzite QDs. Numerical calculation on a wurtzite ZnO QD shows that the dispersion frequencies of the mixing modes are discrete functions of the azimuthal quantum number and axial wave-number. The calculated results agree well with the recent experimental spectra in ZnO QDs. An abnormal electron-phonon coupling strength is observed with the increase of the azimuthal quantum number and the order of phonon modes, which is attributed to the modulation effect of anisotropic dielectric functions of wurtzite ZnO crystal. The analytical Frölich-like Hamiltonian of electron-phonon interaction obtained here is quite useful for further analyzing phonon influence on optoelectronics properties of wurtzite Q0D QD structures. The present results can be reduced naturally to those of wurtzite quantum wires or quantum wells as the height or radius of cylindrical QD approaches infinity. This supports the validity and unity of phonon modes theories in wurtzite low-dimensional quantum systems.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles








Turkish Journal of Physics

Field :   Fen Bilimleri ve Matematik

Journal Type :   Uluslararası

Metrics
Article : 1.313
Cite : 228
Turkish Journal of Physics