Kullanım Kılavuzu
Neden sadece 3 sonuç görüntüleyebiliyorum?
Sadece üye olan kurumların ağından bağlandığınız da tüm sonuçları görüntüleyebilirsiniz. Üye olmayan kurumlar için kurum yetkililerinin başvurması durumunda 1 aylık ücretsiz deneme sürümü açmaktayız.
Benim olmayan çok sonuç geliyor?
Birçok kaynakça da atıflar "Soyad, İ" olarak gösterildiği için özellikle Soyad ve isminin baş harfi aynı olan akademisyenlerin atıfları zaman zaman karışabilmektedir. Bu sorun tüm dünyadaki atıf dizinlerinin sıkça karşılaştığı bir sorundur.
Sadece ilgili makaleme yapılan atıfları nasıl görebilirim?
Makalenizin ismini arattıktan sonra detaylar kısmına bastığınız anda seçtiğiniz makaleye yapılan atıfları görebilirsiniz.
 Görüntüleme 20
 İndirme 3
Reducing danger of heavy metals accumulation in winter wheat grain which is grown after leguminous perennial precursor
2020
Dergi:  
Ukrainian Journal of Ecology
Yazar:  
Özet:

Goal. Assessment of the influence of growing leguminous perennial herbs on the intensity of heavy metals accumulation in winter wheat as in a subsequent crop rotation. Methods. Field, laboratory atomic absorption method, mathematical and statistical processing. Results. cultivation of winter wheat after precursors of Medicago sativa I., Trifolium pratense L., Onobrychis arenaria Kit., Melilotus albus L., Lotus corniculatus L. or Galéga orientalis Lam. leads to a decrease in the content of lead by 1.8-2.5 times, cadmium – by 1.7–2.6 times, copper - 2.2–4.6 times and zinc - 1.6–1.9 times compared to winter wheat after corn precursor on silage. To obtain winter wheat with a minimum lead and copper content, the optimal precursor is Onobrychis arenaria Kit., with a minimum cadmium content - Galéga orientalis Lam. precursor, with a minimum copper and zinc content - the Trifolium precursorpratense L. The lowest influence on the reduction of heavy metals accumulation in winter wheat grain is caused by the precursor Lotus corniculatus L. Thanks to the use of leguminous perennial herbs as a precursor to winter wheat, it is possible to reduce the accumulation coefficient of heavy metals by 1.1-2.9 times compared with the corn precursor on silage. The lowest accumulation coefficient of the studied heavy metals was observed after the precursor of Medicago sativa I. Conclusion. Leguminous perennial herbs - Medicago sativa I., Trifolium pratense L., Onobrychis arenaria Kit., Melilotus albus L., Lotus corniculatus L. and Galega orientalis Lam. promote optimization of soil condition by increasing the content of humus, minerals nutrients, optimization of soil acidity. As a result, they reduce the accumulation of heavy metals (lead, cadmium, copper, and zinc) in winter wheat as the next crop in crop rotation and contribute to the reduction of accumulation coefficient of heavy metals in winter wheat. Key words: Heavy metals; Accumulation; Grain; Leguminous perennial herbs; Precursor References Xu Y.G., Qi F.J., Bai T.X., Yan Y.B., Wu C.C., An Z.R., Luo S., Huang Z., Xie ?. (2019). A further inquiry into co-pyrolysis of straws with manures for heavy metal immobilization in manure-derived biochars. Journal of hazardous materials, 380. UNSP 120870. doi: 10.1016/j.jhazmat.2019.120870. Gholizadeh A., Taghavi M., Moslem A., Neshat A.A., Najafi M.L., Alahabadi A., Ahmadi E., Aval H.E., Asouri A.A. Rezaei H. (2019). Ecological and health risk assessment of exposure to atmospheric heavy metals. Cotoxicology and environmental safety, 184. UNSP 109622. doi: 10.1016/j.ecoenv.2019.109622. Maschowski C., Kruspan P., Garra P., Arif A.T., Trouve G., Giere R. (2019). Physicochemical and mineralogical characterization of biomass ash from different power plants in the Upper Rhine Region. FUEL, 258. UNSP 116020. doi: 10.1016/j.fuel.2019.116020. Luo X., Ren B., Hursthouse A.S., Jiang F., Deng R. (2019). Potentially toxic elements (PTEs) in crops, soil, and water near Xiangtan manganese mine, China: potential risk to health in the foodchain. Environmental geochemistry and health, doi: 10.1007/s10653-019-00454-9. Ahmad I., Khan B., Asad N., Mian I.A., Jamil M. (2019). Traffic-related lead pollution in roadside soils and plants in Khyber Pakhtunkhwa, Pakistan: implications for human health. International journal of environmental science and technology, 16, 12, 8015-8022. doi: 10.1007/s13762-019-02216-7. Lu Q.H., Xu Z., Xu X., Liu L., Liang L., Chen Z., Dong X., Li C., Wang Y., Qiu G. (2019). Cadmium contamination in a soil-rice system and the associated health risk: An addressing concern caused by barium mining. Ecotoxicology and environmental safety, 183. UNSP 109590. doi: 10.1016/j.ecoenv.2019.109590. Kashefighasemabadi A., Karbassi A., Tabatabaee M., Dehabadi A.M. (2019). Development of soil pollution risk index in the vicinity of a waste dam in Chadormalu iron ore mine. International journal of environmental science and technology, 16, 12, 8485-8494. doi: 10.1007/s13762-019-02330-6. Chuang M., Liu F.Y., Hu B., Wei M.B., Zhao J.H., Zhang K., Zhang H.Z. (2019). Direct evidence of lead contamination in wheat tissues from atmospheric deposition based on atmospheric deposition exposure contrast tests. Ecotoxicology and environmental safety, 185, UNSP 109688. doi: 10.1016/j.ecoenv.2019.109688. Kicinska A. (2019). Environmental risk related to presence and mobility of As, Cd and Tl in soils in the vicinity of a metallurgical plant - Long-term observations. Chemosphere, 236. UNSP 124308. doi: 10.1016/j.chemosphere.2019.07.039. Li K., Cao C.L., Ma Y.B., Su D.C., Li J.M. (2019). Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution. Science of the total environment, 692, 1022-1028. doi: 10.1016/j.scitotenv.2019.07.091. Dong X.X., Yang F., Yang S.P., Yan C.Z. (2019). Subcellular distribution and tolerance of cadmium in Canna indica L. Ecotoxicology and environmental safety, 185, UNSP 109692. doi: 10.1016/j.ecoenv.2019.109692. Shao Z.Q., Lu W.L., Nasar J., Zhang J.J., Yan L. (2019). Growth Responses and Accumulation Characteristics of Three Ornamentals Under Copper and Lead Contamination in a Hydroponic-Culture Experiment. Bulletin of environmental contamination and toxicology, 103, 6, 854-859. doi: 10.1007/s00128-019-02724-9. Allevato E, Stazi SR, Marabottini R., D'Annibale A. (2019). Mechanisms of arsenic assimilation by plants and countermeasures to attenuate its accumulation in crops other than rice. Ecotoxicology and environmental safety, 185, UNSP 109701. doi: 10.1016/j.ecoenv.2019.109701. NurAini A.B., Fauziah I.C. (2019). Effect of Triple Super Phosphate (TSP) and KH2PO4 at Different Application Rates on Biomass and Arsenic Uptake by Pteris vittata L. Malaysian journal of soil science, 23, 109-118. Chen F., Zeng S.Y., Ma J., Li X.X., Zhang S.L., Zhu Q.L. (2019). Interactions between decabromodiphenyl ether and lead in soil-plant system. Chemosphere, 236, UNSP 124406. doi: 10.1016/j.chemosphere.2019.124406. Ugulu I., Unver ??.C., Dogan Y. (2019). Potentially toxic metal accumulation and human health risk from consuming wild Urtica urens sold on the open markets of Izmir. Euro-mediterranean journal for environmental integration, 4, 1, UNSP 36. doi: 10.1007/s41207-019-0128-7. Wang M., Chen S.B., Chen L., Wang D., Zhao C.M. (2019). The responses of a soil bacterial community under saline stress are associated with Cd availability in long-term wastewater-irrigated field soil. Chemosphere, 236, UNSP 124372. doi: 10.1016/j. chemosphere.2019.124372. Wang, C.Y., Wu B.D., Jiang K., Wei M., Wang S. (2019). Effects of different concentrations and types of Cu and Pb on soil N-fixing bacterial communities in the wheat rhizosphere. Applied soil ecology, 144, 51-59. doi: 10.1016/j.apsoil.2019.07.008. Ravanbakhsh M., Kowalchuk G.A., Jousset A. (2019). Optimization of plant hormonal balance by microorganisms prevents plant heavy metal accumulation. Journal of hazardous materials, 379, UNSP 120787. doi: 10.1016/j.jhazmat.2019.120787. Zheng H., Wang M., Chen S., Li S., Lei X.Q. (2019). Sulfur application modifies cadmium availability and transfer in the soil-rice system under unstable pe plus pH conditions. Ecotoxicology and environmental safety, 184, UNSP 109641. doi: 10.1016/j.ecoenv.2019.109641. Liu J., Hou H., Zhao L., Sun Z., Lu Y., Li H. (2019). Mitigation of Cd accumulation in rice from Cd-contaminated paddy soil by foliar dressing of S and P. Science of the total environment, 690, 321-328. doi: 10.1016/j.scitotenv.2019.06.332. Azogh A., Marashi S.K., Babaeinejad T. (2019). Effect of zeolite on absorption and distribution of heavy metal concentrations in roots and shoots of wheat under soil contaminated with weapons. Toxin reviews, doi: 10.1080/15569543.2019.1684949. Lin J., He F., Su B., Sun M., Owens G., Chen Z. (2019). The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation. Journal of hazardous materials, 379. UNSP 120832. doi: 10.1016/j.jhazmat.2019.120832. Sun G.L., Reynolds E.E., Belcher A.M. (2019). Designing yeast as plant-like hyperaccumulators for heavy metals. Nature communications, 10, 5080. doi: 10.1038/s41467-019-13093-6. Guo Y., Qiu C., Long S., Wang H., Wang Y. (2019). Cadmium accumulation, translocation, and assessment of eighteen Linum usitatissimum L. cultivars growing in heavy metal contaminated soil. International journal of phytoremediation, doi: 10.1080/15226514. 2019.1683714. Romero-Estevez D., Yanez-Jacome G.S., Simbana-Farinango K., Navarrete H. (2019). Content and the relationship between cadmium, nickel, and lead concentrations in Ecuadorian cocoa beans from nine provinces. Food control, 106. UNSP 106750. doi: 10.1016/j.foodcont.2019.106750. Ventorino V., Pascale A., Fagnano M., Adamo P., Faraco V., Rocco C., Fiorentino N., Pepe O. (2019). Soil tillage and compost amendment promote bioremediation and biofertility of polluted area. Journal of cleaner production, 239. UNSP 118087. doi: 10.1016/j.jclepro.2019.118087. Kumar V., Thakur R.K., Kumar P. (2019). Assessment of heavy metals uptake by cauliflower (Brassica oleracea var. botrytis) grown in integrated industrial effluent irrigated soils: A prediction modeling study. Scientia horticulturae, 257. 108682. doi: 10.1016/j.scienta.2019.108682. Lei M., Pan Y.Q., Chen C.Y., Du H.H., Tie B.Q., Yan X.P., Huang R.Z. (2019). Application of economic plant for remediation of cadmium contaminated soils: Three mulberry (Moms alba L.) varieties cultivated in two polluted fields. Chemosphere, 236. UNSP 124379. doi: 10.1016/j.chemosphere.2019.124379. Carrion C.S., Mendoza W.J. (2019). Potential Phytoremediator of Native Species in Soils Contaminated by Heavy Metals in the Garbage Dump Quitasol-Imponeda Abancay. Journal of sustainable development of energy water and environment systems-jsdewes, 7, 4, 584-600. doi: 10.13044/j.sdewes.d7.0261. Chaturvedi R., Favas P.J.C., Pratas J., Varun M., Paul M.S. (2019). Metal (loid) induced toxicity and defense mechanisms in Spinacia oleracea L.: Ecological hazard and Prospects for phytoremediation. Ecotoxicology and environmental safety, 183. Unsp 109570. doi: 10.1016/j.ecoenv.2019.109570. Bielecka A., Krolak E. (2019). Selected Features of Canadian Goldenrod That Predispose the Plant to Phytoremediation. Journal of ecological engineering, 20, 10, 88-93. doi: 10.12911/22998993/112906/. Han R., Dai H.?., Zhan J., Wei S.H. (2019). Clean extracts from accumulator efficiently improved Solanum nigrum L. accumulating Cd and Pb in soil. Journal of cleaner production, 239. UNSP 118055. doi: 10.1016/j.jclepro.2019.118055. Kiran B.R., Prasad M.N. (2019). Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead-spiked soils. Ecotoxicology and environmental safety, 183. UNSP 10957. doi: 10.1016/j.ecoenv.2019.109574. Kong Z.Y., Wu Z.J., Glick B.R., He S.Y., Huang C., Wu L. (2019). Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal contaminated soils. Ecotoxicology and environmental safety, 183. UNSP 109504. doi: 10.1016/j.ecoenv.2019.109504. Zhou W., Zhang J., Zou M., Liu X., Di X., Wang Q., Liu Y., Liu Y., Li J. (2019). Feasibility of Using Rice Leaves Hyperspectral Data to Estimate CaCl2-extractable Concentrations of Heavy Metals in Agricultural Soil. Scientific reports, 9, 16084. doi: 10.1038/s41598- 019-52503-z. Massadeh A.M., Massadeh S.A. (2019). Removal of Cu and Zn from Aqueous Solutions by Selected Tree Leaves with Phytoremediation Potential. Water air and soil pollution, 230, 11, 264. doi: 10.1007/s11270-019-4323-6. Baghaie A.H., Fereydoni M. (2019). The potential risk of heavy metals on human health due to the daily consumption of vegetables. Environmental health engineering and management journal, 6, 1, 11-16. doi: 10.15171/EHEM.2019.02. Kour R., Jain D., Bhojiya A.A., Sukhwal A., Sanadhya S., Saheewala H., Jat G., Singh A., Mohanty S.R. (2019). Zinc biosorption, biochemical and molecular characterization of plant growth-promoting zinc-tolerant bacteria. Biotech, 9, 11, 421. doi: 10.1007/s13205-019-1959-2. Ivanova L.P., Detcheva A.K., Vassileva P.S. (2019). Characterization of Two Bulgarian Herbs for Use as Biosorbents for Copper (II). Analytical letters, 52, 17, 2650-2662. doi: 10.1080/00032719.2019.1587447.

Anahtar Kelimeler:

Atıf Yapanlar
Bilgi: Bu yayına herhangi bir atıf yapılmamıştır.
Benzer Makaleler








Ukrainian Journal of Ecology

Alan :   Fen Bilimleri ve Matematik

Dergi Türü :   Uluslararası

Metrikler
Makale : 1.237
Atıf : 1.921
2023 Impact/Etki : 0.003
Ukrainian Journal of Ecology