User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 13
Treatment of Automotive Paint Wastewater: Photocatalytic degradation of methylene blue using semi-conductive ZrO2
2023
Journal:  
International Journal of Automotive Science And Technology
Author:  
Abstract:

Addressing water pollution, particularly in the automotive industry's painting processes, is vital due to its significant environmental impact, and the use of photocatalysis, an environmentally friendly and energy-efficient advanced oxidation method, holds promise for removing non-biodegradable organic dyes from wastewater. In this study, the use of semiconductor ZrO2 nanoparticles in the photocatalytic degradation of pollutants in wastewater under UV light was investigated. Zeta potential, Brunauer–Emmett–Teller (BET) surface area and UV-Vis absorption spectroscopy analyses were performed on the ZrO2 nanoparticle synthesized under optimized experimental conditions. ZrO2 nanoparticles synthesized under the optimized experimental conditions exhibited a high specific surface area (51.793 m2/g). ZrO2 nanoparticles had strong absorption in the visible light region, and the energy band gap was estimated to be approximately 3.062 eV. The photocatalytic activity was evaluated by the degradation of methylene blue under UV light (366 nm). The effects of parameters such as the amount of catalyst, concentration and pH of the dye solution, the wavelength of the UV light source used (366 and 254 nm) and the type of test environment on the removal efficiency of methylene blue were investigated. ZrO2 nanoparticles showed a high degradation efficiency of 91% in a strong alkaline environment, which may be the result of the facilitated formation of –OH radicals due to the increased concentration of hydroxyl ions.

Keywords:

0
2023
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles










International Journal of Automotive Science And Technology

Field :   Mühendislik

Journal Type :   Uluslararası

Metrics
Article : 243
Cite : 159
2023 Impact : 0.107
International Journal of Automotive Science And Technology