User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
  Citation Number 1
 Views 40
 Downloands 3
Analysis of the azimuth angles of a medium-scale PV system in non-ideal positions for roof application
2023
Journal:  
MANAS Journal of Engineering
Author:  
Abstract:

The installation of photovoltaic (PV) panels on building roofs has seen a significant increase in recent years due to the rising cost of conventional energy sources. This shift towards renewable energy sources has been driven by the urgent need to mitigate the effects of climate change. PV applications is one of the most sustainable and cleanest sources of renewable energy, producing no greenhouse gas emissions during operation. By reducing reliance on fossil fuels, the use of PV panels can help to reduce carbon emissions and lower the overall carbon footprint of buildings. In addition to the environmental benefits, the installation of PV panels can also provide economic benefits, such as reduced energy costs and increased property value. In the past, installations were mostly made in the direction of the south, but now the roofs of the buildings facing west, east, and even north are also considered for PV panel installations. In this study, a grid-connected PV system with an installed power of 148 kWp at the Konya Technical University (KTUN) campus is modeled by PVsyst software. The PV systems' performance on building roofs oriented in different geographical directions (north, south, east, and west) with a 30° fixed tilt angle was investigated. In the modeling, the solar irradiation coming to the surfaces of the PV panels, electricity production values, performance ratios, and their economic feasibility were calculated. The highest effective irradiation value on the panel surface was obtained from the system facing south, found as 1964.4 kWh/m². It is 20.77%, 22.87%, and 73.48% higher than the solar irradiation obtained at -90°, +90°, and 180° azimuth angles, respectively. It is concluded that the electricity generation amounts of PV systems highly depend on the azimuth angle. Similarly, the highest annual electricity production was obtained from the system installed in the 0° azimuth angle found as 254.77 MWh. The annual total electricity generation is 19.66%, 22.55%, and 69.41% higher in systems modeled toward the east, west, and north, respectively. Performance ratio, defined as the ratio of radiation coming to the panel surface and the electricity produced, has relative values between 0.843 and 0.862 for four different azimuth angles. Furthermore, as an economic analysis, the Basic Payback Period (BPP) of the projects was found as 6.92 years, 4.08 years, 4.88 years, and 5.00 years for the systems modeled in the north, south, east, and west directions, respectively. It can be concluded that the most suitable orientation is south, and the other two directions, east, and west, can also be considered feasible.

Keywords:

0
2023
Author:  
Citation Owners
Attention!
To view citations of publications, you must access Sobiad from a Member University Network. You can contact the Library and Documentation Department for our institution to become a member of Sobiad.
Off-Campus Access
If you are affiliated with a Sobiad Subscriber organization, you can use Login Panel for external access. You can easily sign up and log in with your corporate e-mail address.
Similar Articles






MANAS Journal of Engineering

Field :   Fen Bilimleri ve Matematik; Mühendislik

Journal Type :   Uluslararası

Metrics
Article : 353
Cite : 129
Quarter
Basic Field of Science and Mathematics
Q4
102/135

Basic Field of Engineering
Q4
95/114

MANAS Journal of Engineering