User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 17
STEADY STATE THERMAL ANALYSIS OF PERFORATED HONEYCOMBPLATE FIN HEAT SINKS USING ANSYS
2022
Journal:  
International Journal of Advanced Research
Author:  
Abstract:

Heat sink or heat exchanger is a passive cooling device used in electronic components to prolong their longevity, performance and reliability. All electronic components utilize current for the operational purposes and thus become prone to sharp increase in the temperature. The generated heat above the operating level becomes critical in-terms of failure component and hence, appropriate thermal management demands come into act. Finned or extended surface heat sinks are used to cool power electronic devices and components. The comparative results of plate-fin forms on the thermal performance of the heat-sink with inline arrangement is analyzed in this paper. Four forms of fins: Rectangular, One-side tapered, Inverted T section and I section with and without honeycomb perforations are designed on SOLIDWORKS® and analysed using ANSYS® software to identify a cooling solution for a CPU in terms of temperature and directional heat flux along x, y and z directions. The aluminium alloy 6063-T6 and natural graphite are selected as a base plate and fin materials respectively. The main objective of this paper is to contribute to this improving area of research by studying the effect of honeycomb perforations of plate fin heat sinks under natural convection using steady state thermal analysis at a constant heat flow of 20W and 40W in two different cases with air inlet temperature taken as 37.85° C. A total of 16 specimen were analysed. 8 specimen of plate fin heat sinks without perforations were compared with the rest 8 specimen with honeycomb perforations. It was evaluated from both the cases that inverted T sectional fin with perforations provided an improvement in thermal efficiency and better heat flux removal results among other plate fin profiles where as in terms of density and cost trade-offs one side perforated tapered fin outperformed other fins. 

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles










International Journal of Advanced Research

Field :   Sosyal, Beşeri ve İdari Bilimler

Journal Type :   Uluslararası

Metrics
Article : 10.413
Cite : 697
International Journal of Advanced Research