User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 7
Genetic Dissection of Tiller Number qTN4 in Rice
2023
Journal:  
Agriculture
Author:  
Abstract:

: Tiller number (TN) is an important trait that contributes to yield in rice ( Oryza sativa L.). A set of 76 chromosome segment substitution lines (CSSLs) derived from the super-hybrid cross between Zhonghui 9308 (ZH9308) and Xieqingzao B (XQZB) was used to map quantitative trait loci (QTL) controlling tiller number (TN). A total of four QTLs were detected in Fuyang, Zhejiang Province (30.15° N, 120° E). Two QTLs were detected in Lingshui, Hainan Province (18.5° N, 110° E) in our previous study. To further map the QTL on chromosome 4, namely qTN4, the line CSSL29 with a lower tiller number was selected to cross with ZH9308 to develop the secondary F 2 population. In the F 2:3 population, the qTN4 was validated and subsequently narrowed down to a 4.08 Mb region. What is more, combined phenotype with genotype, qTN4 was dissected into two QTLs, qTN4.1 and qTN4.2, in the F 4:5 population. The qTN4.1 and qTN4.2 explained 34.31% and 32.05% of the phenotypic variance, with an additive effect of 1.47 and 1.38, respectively. Finally, the qTN4.1 and qTN4.2 were fine-mapped into a 193.55 Kb and 175.12 Kb intervals on chromosome 4, respectively. Based on genotype and phenotype, four near-isogenic lines (NILs) were selected in the mapping populations. Compared with NIL CSSL29, tiller number (TN), grain setting rate, grain length (GL), the ratio of grain length to width (LWR) and grain yield per plant of NIL ZH9308, NIL- qTN4.1 ZH9308 and NIL- qTN4.2 ZH9308 were increased, and the heading date of these three lines were earlier than that of NIL CSSL29. Interestingly, among the candidate genes of qTN4.1 and qTN4.2, except for LOC_Os04g23550, none of the other genes has been cloned, indicating the existence of a novel gene-controlling tiller number. These results lay a foundation for the analysis of QTL controlling tiller number in ZH9308 and provide a theoretical basis for the application of ZH9308 in super-hybrid breeding.

Keywords:

0
2023
Journal:  
Agriculture
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Agriculture

Journal Type :   Uluslararası

Metrics
Article : 9.836
Cite : 6.453
2023 Impact : 0.04
Agriculture