Kullanım Kılavuzu
Neden sadece 3 sonuç görüntüleyebiliyorum?
Sadece üye olan kurumların ağından bağlandığınız da tüm sonuçları görüntüleyebilirsiniz. Üye olmayan kurumlar için kurum yetkililerinin başvurması durumunda 1 aylık ücretsiz deneme sürümü açmaktayız.
Benim olmayan çok sonuç geliyor?
Birçok kaynakça da atıflar "Soyad, İ" olarak gösterildiği için özellikle Soyad ve isminin baş harfi aynı olan akademisyenlerin atıfları zaman zaman karışabilmektedir. Bu sorun tüm dünyadaki atıf dizinlerinin sıkça karşılaştığı bir sorundur.
Sadece ilgili makaleme yapılan atıfları nasıl görebilirim?
Makalenizin ismini arattıktan sonra detaylar kısmına bastığınız anda seçtiğiniz makaleye yapılan atıfları görebilirsiniz.
 Görüntüleme 16
 İndirme 2
Postgenomic technologies for genomic and proteomic analysis in biological and medical research
2019
Dergi:  
Ukrainian Journal of Ecology
Yazar:  
Özet:

Over the 15 years since the decoding of the human genome a large number of individual genomes have been sequenced. Targeted sequencing – sequencing of select genome regions - has been widely used both in research and in medical practice. The use of various types of genetic analysis is starting to be used in daily clinical routine. At the same time, the price of sequencing decreases and as a result, the amount of genetic information available to researchers and physicians increases. These processes together determine the need for creation of databases for the centralized storage of genetic information which is crucial for synchronization and validation of the work of various institutions. One of the first such databases was the NCBI database created and supervised by the US National Center for Biotechnological Information (NCBI) in collaboration with the National Institute for Human Genome Research (NHGRI). At the same time, the available methods for studying associations between DNA polymorphisms and various phenotypic manifestations do not cover the most important layer of regulation of biological processes - the proteome. The methods of high-throughput proteomic analysis that are to be developed will allow identifying driver mutations that make the greatest contribution to the phenotype of the studied object. The application of an integrated analysis of the genome and proteome for the diagnosis and treatment of cancer pathologies is one of the most important research goals now. This approach will allow to identify new genetic biomarkers that could be used for reliable prediction of the treatment response, risks of the most important diseases, and the development of novel medications. This review shows recent advances in proteomic and genomic approaches to the development of more sensitive diagnostic and prognostic biomarkers that can be translated into improved clinical care and treatment of the disease. Keywords: sequencing; genomics; transcriptomics; proteomics; socially significant diseases References Adaway, J. E., Keevil, B. G., & Owen, L. J. (2015). Liquid chromatography tandem mass spectrometry in the clinical laboratory. Annals of Clinical Biochemistry, 52(1), 18–38. https://doi.org/10.1177/0004563214557678 Cho, W. C. (2017). Mass spectrometry-based proteomics in cancer research. Expert Review of Proteomics, 14(9), 725–727. https://doi.org/10.1080/14789450.2017.1365604 Creighton, C. J., & Huang, S. (2015). Reverse phase protein arrays in signaling pathways: A data integration perspective. Drug Design, Development and Therapy, 9, 3519–3527. https://doi.org/10.2147/DDDT.S38375 Day, D., & Siu, L. L. (2016). Approaches to modernize the combination drug development paradigm. Genome Medicine, 8(1), 115. https://doi.org/10.1186/s13073-016-0369-x Fagerberg, L., Hallstrom, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., … Uhlen, M. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular and Cellular Proteomics, 13(2), 397–406. https://doi.org/10.1074/mcp.M113.035600 Haque, F., Li, J., Wu, H. C., Liang, X. J., & Guo, P. (2013). Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today, 8(1), 56–74. https://doi.org/10.1016/j.nantod.2012.12.008 Hendry, S., Byrne, D. J., Wright, G. M., Young, R. J., Sturrock, S., Cooper, W. A., & Fox, S. B. (2018). Comparison of Four PD-L1 Immunohistochemical Assays in Lung Cancer. Journal of Thoracic Oncology, 13(3), 367–376. https://doi.org/10.1016/j.jtho.2017.11.112 Isik, Z., & Ercan, M. E. (2017). Integration of RNA-Seq and RPPA data for survival time prediction in cancer patients. Computers in Biology and Medicine, 89, 397–404. https://doi.org/10.1016/j.compbiomed.2017.08.028 Jackson, S. E., & Chester, J. D. (2015). Personalised cancer medicine. International Journal of Cancer, 137(2), 262–266. https://doi.org/10.1002/ijc.28940 Kamps, R., Brandão, R. D., van den Bosch, B. J., Paulussen, A. D. C., Xanthoulea, S., Blok, M. J., & Romano, A. (2017). Next-generation sequencing in oncology: Genetic diagnosis, risk prediction and cancer classification. International Journal of Molecular Sciences, 18(2), 308. https://doi.org/10.3390/ijms18020308 Kim, B. (2017). Western Blot Techniques. Methods in Molecular Biology. Springer New York. https://doi.org/10.1007/978-1-4939-6990-6_9 Korlach, J., Bjornson, K. P., Chaudhuri, B. P., Cicero, R. L., Flusberg, B. A., Gray, J. J., … Turner, S. W. (2010). Real-time DNA sequencing from single polymerase molecules. Methods in Enzymology. Elsevier. https://doi.org/10.1126/science.1162986 Larijani, B., Perani, M., Alburai’si, K., & Parker, P. J. (2015). Functional proteomic biomarkers in cancer. Annals of the New York Academy of Sciences, 1346(1), 1–6. https://doi.org/10.1111/nyas.12749 Li, X., Wang, W., & Chen, J. (2017). Recent progress in mass spectrometry proteomics for biomedical research. Science China Life Sciences, 60(10), 1093–1113. https://doi.org/10.1007/s11427-017-9175-2 Liu, C. (2011). The Application of SELDI-TOF-MS in Clinical Diagnosis of Cancers. Journal of Biomedicine and Biotechnology, 2011, 1–6. https://doi.org/10.1155/2011/245821 Lizardi, P. M., Yan, Q., & Wajapeyee, N. (2017). Illumina Sequencing of Bisulfite-Converted DNA Libraries. Cold Spring Harbor Protocols, 2017(11), pdb.prot094870. https://doi.org/10.1101/pdb.prot094870 Ukrainian Journal of Ecology, 9(4), 2019 Ukrainian Journal of Ecology 776 Lopes, A. S., Cruz, E. C. S., Sussulini, A., & Klassen, A. (2017). Metabolomic strategies involving mass spectrometry combined with liquid and gas chromatography. Advances in Experimental Medicine and Biology. Springer International Publishing. https://doi.org/10.1007/978-3-319-47656-8_4 Malapelle, U., Vigliar, E., Sgariglia, R., Bellevicine, C., Colarossi, L., Vitale, D., … Troncone, G. (2015). Ion Torrent next-generation sequencing for routine identification of clinically relevant mutations in colorectal cancer patients. Journal of Clinical Pathology, 68(1), 64–68. https://doi.org/10.1136/jclinpath-2014-202691 Maxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America, 74(2), 560–564. https://doi.org/10.1073/pnas.74.2.560 Omenn, G. S., Lane, L., Lundberg, E. K., Overall, C. M., & Deutsch, E. W. (2017). Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project. Journal of Proteome Research, 16(12), 4281–4287. https://doi.org/10.1021/acs.jproteome.7b00375 Panis, C., Pizzatti, L., Souza, G. F., & Abdelhay, E. (2016). Clinical proteomics in cancer: Where we are. Cancer Letters, 382(2), 231–239. https://doi.org/10.1016/j.canlet.2016.08.014 Petrosino, J. F., Highlander, S., Luna, R. A., Gibbs, R. A., & Versalovic, J. (2009). Metagenomic pyrosequencing and microbial identification. Clinical Chemistry, 55(5), 856–866. https://doi.org/10.1373/clinchem.2008.107565 Rhoads, A., & Au, K. F. (2015). PacBio Sequencing and Its Applications. Genomics, Proteomics and Bioinformatics, 13(5), 278–289. https://doi.org/10.1016/j.gpb.2015.08.002 Ronaghi, M. (1998). A Sequencing Method Based on Real-Time Pyrophosphate. Science, 281(5375), 363–365. https://doi.org/10.1126/science.281.5375.363 Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463 Tanase, C., Albulescu, R., & Neagu, M. (2015). Proteomic Approaches for Biomarker Panels in Cancer. Journal of Immunoassay and Immunochemistry, 37(1), 1–15. https://doi.org/10.1080/15321819.2015.1116009 Thul, P. J., & Lindskog, C. (2017). The human protein atlas: A spatial map of the human proteome. Protein Science, 27(1), 233–244. https://doi.org/10.1002/pro.3307 Verma, M., Kulshrestha, S., & Puri, A. (2016). Genome Sequencing. Methods in Molecular Biology. Springer New York. https://doi.org/10.1007/978-1-4939-6622-6_1 Yuan, Y., Hong, X., Lin, Z.-T., Wang, H., Heon, M., & Wu, T. (2017). Protein Arrays III: Reverse-Phase Protein Arrays. Methods in Molecular Biology. Springer New York. https://doi.org/10.1007/978-1-4939-7231-9_21 Zascavage, R. R., Thorson, K., & Planz, J. V. (2019). Nanopore sequencing: An enrichment-free alternative to mitochondrial DNA sequencing. Electrophoresis, 40(2), 272–280. https://doi.org/10.1002/elps.201800083 Zhou, X., Ren, L., Meng, Q., Li, Y., Yu, Y., & Yu, J. (2010). The next-generation sequencing technology and application. Protein and Cell, 1(6), 520–536. https://doi.org/10.1007/s13238-010-0065-3

Anahtar Kelimeler:

Atıf Yapanlar
Bilgi: Bu yayına herhangi bir atıf yapılmamıştır.
Benzer Makaleler










Ukrainian Journal of Ecology

Alan :   Fen Bilimleri ve Matematik

Dergi Türü :   Uluslararası

Metrikler
Makale : 1.237
Atıf : 1.921
2023 Impact/Etki : 0.003
Ukrainian Journal of Ecology