User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 ASOS INDEKS
 Views 9
Assessment of Partial Discharges Evolution in Bushing by Infrared Analysis †
2021
Journal:  
Engineering Proceedings
Author:  
Abstract:

The quality of power systems is related to their capability to predict failures, avoid stoppages, and increase the lifetime of their components. Therefore, science has been developing monitoring systems to identify failures in induction motors, transformers, and transmission lines. In this context, one of the most crucial components of the electrical systems is the insulation devices such as bushings, which are constantly subjected to dust, thermal stresses, moisture, etc. These conditions promote insulation deterioration, leading to the occurrence of partial discharges. Partial discharges are localized dielectric breakdown that emits ultra-violet radiation, heat, electromagnet, and acoustics waves. The most traditional techniques to identify these flaws on bushings are based on the current, ultra high frequency, and acoustic emission analysis. However, thermal analysis stands out as a noise-resistant technique to monitor several components in the power systems. Although the thermal method is applied to detect different types of faults, such as bad contacts, overloads, etc, this technique has not been previously applied to perform partial discharge detection and evaluate its evolution on bushings. Based on this issue, this article proposes two new indexes to characterize the discharge evolution based on the infrared thermal analysis: the area ratio coefficient and the Red, Green, and Blue (RGB) ratio coefficient. Seven discharge levels were induced in a contaminated bushing, and an infrared thermal camera captured 20 images per condition, totalizing 140 images. New coefficients were used to perform the identification of discharge evolution. Results indicated that values of the new indexes increase with the partial discharge activity. Thus, the new imaging processing approach can be a promising contribution to literature, improving the reliability and maintenance planning for power transmission systems.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles










Engineering Proceedings

Journal Type :   Uluslararası

Engineering Proceedings