User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 11
 Downloands 2
Some numerical characteristics of direct sum of operators
2020
Journal:  
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
Author:  
Abstract:

The numerical range W(T) of a linear bounded operator T on a Hilbert space is the collection of complex numbers of the form (Tx,x) with x ranging over the unit vectors in the Hilbert space. In this study, firstly, the connection between numerical range of direct sum of operators in the direct sum of Hilbert spaces and their coordinate operators has been investigated. At the end of the first investigation the result obtained is as follows: If for any n≥1, H_{n} is a Hilbert space, A_{n}∈L(H_{n}), H=⊕_{n=1}^{∞}H_{n} and A=⊕_{n=1}^{∞}A_{n}, A ∈L(H), then numerical range of the operator A is in the form W(A)= co (⋃_{n=1}^{∞}W(A_{n}) ), where co (Ω), Ω⊂C denotes the convex hull of Ω. The numerical radius w(T) of a linear bounded operator T on a Hilbert space is a number which is given by w(T)=sup {|λ| : λ∈W(T) }. In this study, secondly, the connection between numerical radius of direct sum of operators in the direct sum of Hilbert spaces and their coordinate operators has been investigated. At the end of the second investigation the result obtained is as follows: If for any n≥1, H_{n} is a Hilbert space, A_{n}∈L(H_{n}), H=⊕_{n=1}^{∞}H_{n} and A=⊕_{n=1}^{∞}A_{n}, A ∈L(H), then numerical radius of the operator A is in the following form w(A)= sup w(A_{n}). The Crawford number c(T) of a linear bounded operator T on a Hilbert space is given by c(T)=inf {|λ| : λ∈W(T) }. In this study, thirdly, the connection between Crawford number of direct sum of operators in the direct sum of Hilbert spaces and their coordinate operators has been investigated. At the end of the third investigation the result obtained is as follows: If for any n≥1, H_{n} is a Hilbert space, A_{n}∈L(H_{n}), Re(A_{n})≥0 (≤0), H=⊕_{n=1}^{∞}H_{n} and A=⊕_{n=1}^{∞}A_{n}, A ∈L(H), then Crawford number of the operator A is in the following form c(A)=inf c(A_{n}). Moreover, It is known that for a linear bounded accretive operator T if W(T)⊂{z ∈C:|argz| < ϕ} for any ϕ∈[0, π/ 2), then it is called a sectorial operator with vertex γ=0 and semi-angle ϕ. In this case, T ∈S_{ϕ}(H). In this study, finally, the connection between sectoriality of direct sum of operators in the direct sum of Hilbert spaces and their coordinate operators has been investigated. At the end of the last investigation the result obtained is as follows: If for any n≥1,H_{n} is a Hilbert space, A_{n}∈L(H_{n}),A_{n}∈S_{ϕ_{n}}(H_{n}),H=⊕_{n=1}^{∞}H_{n} and A=⊕_{n=1}^{∞}A_{n},A∈L(H), then for some ϕ∈[0,π/2), A∈S_{ϕ}(H) the necessary and sufficient condition is sup ϕ_{n}<ϕ. At the end of this study, an example including all these connections has been given. 

Keywords:

0
2020
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles






Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Journal Type :   Ulusal

Metrics
Article : 1.028
Cite : 282
2023 Impact : 0.025
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics