User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 ASOS INDEKS
 Views 13
Analysis and design of an air to air heat exchanger used in energy recovery systems
2022
Journal:  
Journal of Energy Systems
Author:  
Abstract:

With the continuous worldwide energy use increase, energy efficiency is gaining high importance. Consequently, many methods have been investigated for potential energy savings. One of these methods is the use of heat recovery systems. These systems basically re-use waste heat and reduce energy consumption. Also, they are increasingly used to reduce heating and cooling demands of buildings. Their main feature is to provide fresh air to the place which is heated by the exhaust air with the help of a heat exchanger (HEX) working between two different temperature sources. The most commonly used types of heat exchangers in ventilation systems are cross-flow and counter-flow heat exchangers. Cross-flow heat exchangers have a thermal efficiency in the range of 50-75% while counter-flow heat exchangers have 75-95%. Many studies have been carried out to increase the efficiency of this type of heat exchangers. In this study, different designs of cross-flow and counter-flow exchangers are compared using ANSYS Fluent software. The aim is to determine how the plate surface geometry affects heat transfer and pressure drop. It is aimed to find the optimum design with maximum efficiency, high heat transfer and low pressure drop for heat exchangers. As a result, it has been observed that thermal efficiency increased from 18% to 60% when changing from cross flow to counter flow in flat plate design, while it increased from 25% to 77% in enhanced plate designs. For enhanced designs, counter flow heat exchanger is 52% more efficient than cross flow heat exchanger. Also, improvements to increase the surface area and turbulence in both flow types have increased heat transfer and thermal efficiency.

Keywords:

0
2022
Author:  
Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles










Journal of Energy Systems

Journal Type :   Uluslararası

Journal of Energy Systems