Kullanım Kılavuzu
Neden sadece 3 sonuç görüntüleyebiliyorum?
Sadece üye olan kurumların ağından bağlandığınız da tüm sonuçları görüntüleyebilirsiniz. Üye olmayan kurumlar için kurum yetkililerinin başvurması durumunda 1 aylık ücretsiz deneme sürümü açmaktayız.
Benim olmayan çok sonuç geliyor?
Birçok kaynakça da atıflar "Soyad, İ" olarak gösterildiği için özellikle Soyad ve isminin baş harfi aynı olan akademisyenlerin atıfları zaman zaman karışabilmektedir. Bu sorun tüm dünyadaki atıf dizinlerinin sıkça karşılaştığı bir sorundur.
Sadece ilgili makaleme yapılan atıfları nasıl görebilirim?
Makalenizin ismini arattıktan sonra detaylar kısmına bastığınız anda seçtiğiniz makaleye yapılan atıfları görebilirsiniz.
  Atıf Sayısı 2
 Görüntüleme 11
 İndirme 2
Classification of Epileptic EEG Signals Using DWT-Based Feature Extraction and Machine Learning Methods
2021
Dergi:  
International Journal of Applied Mathematics Electronics and Computers
Yazar:  
Özet:

Epileptic attacks can be caused by irregularities in the electrical activities of the brain. Electroencephalography (EEG) data demonstrating electrical activity in the brain play an important role in the diagnosis and classification of epileptic attacks and epilepsy disease. This study describes a method for detecting epileptic attacks using various machine learning methods and EEG features obtained with the Discrete Wavelet Transform (ADD). In the study, an EEG dataset consisting of five separate clusters from healthy and sick individuals was used, and the classification success between these conditions was examined separately. Support Vector Machine (SVM), Artificial Neural Networks (ANN), k-Nearest Neighbor (k-NN), Decision Trees (Tree), Random Forest, and Naive Bayes machine learning methods, which are widely used in classification, were used. In addition, comparisons were made with various windowing and overlap ratios. As a result, classification successes, as well as optimal windowing and overlap ratios were determined for various EEG clusters in the dataset.

Anahtar Kelimeler:

null
2021
Yazar:  
0
2021
Yazar:  
Atıf Yapanlar
Dikkat!
Yayınların atıflarını görmek için Sobiad'a Üye Bir Üniversite Ağından erişim sağlamalısınız. Kurumuzun Sobiad'a üye olması için Kütüphane ve Dokümantasyon Daire Başkanlığı ile iletişim kurabilirsiniz.
Kampüs Dışı Erişim
Eğer Sobiad Abonesi bir kuruma bağlıysanız kurum dışı erişim için Giriş Yap Panelini kullanabilirsiniz. Kurumsal E-Mail adresiniz ile kolayca üye olup giriş yapabilirsiniz.
Benzer Makaleler








International Journal of Applied Mathematics Electronics and Computers

Alan :   Fen Bilimleri ve Matematik

Dergi Türü :   Uluslararası

Metrikler
Makale : 308
Atıf : 170
2023 Impact/Etki : 0.188
International Journal of Applied Mathematics Electronics and Computers