User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
  Citation Number 1
 Views 25
 Downloands 2
Modeling the process of microbial biofilm formation on stainless steel with a different surface roughness
2019
Journal:  
Eastern-European Journal of Enterprise Technologies
Author:  
Abstract:

This paper reports a study into the process of bacteria adhesion to surfaces of different roughness depending on sizes and shapes. It was determined that at the surface of stainless steel with a roughness of 2.687±0.014 µm, the film formation process in E. coli and S. aureus occurred equally over 3 to 24 hours and did not depend on the size of bacteria. This makes it possible to argue that rod-shaped and coccal bacteria freely attach themselves in the grooves of roughness, followed by the initial process related to the first stage of a biofilm formation. During sanitization, the hollows of roughness could host both the coccal and rod-shaped bacteria. At the surface of steel with a roughness of 0.95±0.092 μm the process of film formation in S. aureus occurred more intensely than in E. coli. Within 3 h of incubation, density of the formed biofilms S. aureus was 1.2 times larger compared to the biofilms E. coli. Over the following 15 hours of incubation, the biofilms S. aureus were on average 1.3 times denser. This suggests that S. aureus, due to a spherical form, can stay put in the hollows of roughness of 0.95±0.092 µm and quicker attach to the surface. At the same time, E. coli, owing to a rod-shaped shape, would attach at such a surface roughness to the hollows lengthwise only. It has been proven that at a surface roughness of 0.63±0.087 µm the intensity of the S. aureus film formation was on average 1.4 times faster than in E. coli. However, at a roughness of 0.16±0.018 μm the process of film formation occurred equally in E. coli and S. aureus, but the biofilms demonstrated lower density compared to those that formed at a roughness of 0.63±0.087 µm.Thus, the use of equipment with a roughness of less than 0.5 µm in the dairy industry will make it possible to reduce the attachment of microorganisms to surface and to decrease contamination of dairy products Author Biographies Mykola Kukhtyn, Ternopil Ivan Puluj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001 Doctor of Veterinary Sciences, Professor Department of Food Biotechnology and Chemistry

Keywords:

Citation Owners
Attention!
To view citations of publications, you must access Sobiad from a Member University Network. You can contact the Library and Documentation Department for our institution to become a member of Sobiad.
Off-Campus Access
If you are affiliated with a Sobiad Subscriber organization, you can use Login Panel for external access. You can easily sign up and log in with your corporate e-mail address.
Similar Articles












Eastern-European Journal of Enterprise Technologies

Field :   Fen Bilimleri ve Matematik

Journal Type :   Uluslararası

Metrics
Article : 4.764
Cite : 4.485
2023 Impact : 0.294
Eastern-European Journal of Enterprise Technologies