User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 17
EVALUATION OF COMPONENT ALGORITHMS IN AN ALGORITHM SELECTION APPROACH FOR SEMANTIC SEGMENTATION BASED ON HIGH-LEVEL INFORMATION FEEDBACK
2016
Journal:  
Radio Electronics, Computer Science, Control
Author:  
Abstract:

Abstract In this paper we discuss certain theoretical properties of the algorithm selection approach to the problem of semantic segmentation in computer vision. High quality algorithm selection is possible only if each algorithm’s suitability is well known because only then the algorithm selection result can improve the best possible result given by a single algorithm. We show that an algorithm’s evaluation score depends on final task; i.e. to properly evaluate an algorithm and to determine its suitability, only well formulated tasks must be used. When algorithm suitability is well known, the algorithm can be efficiently used for a task by applying it in the most favorable environmental conditions determined during the evaluation. The task dependent evaluation is demonstrated on segmentation and object recognition. Additionally, we also discuss the importance of high level symbolic knowledge in the selection process. The importance of this symbolic hypothesis is demonstrated on a set of learning experiments with a Bayesian Network, a SVM and with statistics obtained during algorithm selector training. We show that task dependent evaluation is required to allow efficient algorithm selection. We show that using symbolic preferences of algorithms, the accuracy of algorithm selection can be improved by 10 to 15% and the symbolic segmentation quality can be improved by up to 5% when compared with the best available algorithm. References Rice J. The algorithm selection problem / J. Rice // Advances in Computers. – 1976. – Vol. 15. – P. 65–118. 2. Lukac M. Machine learning based adaptive contour detection using algorithm selection and image splitting / M. Lukac, R. Tanizawa, M. Kameyama // Interdisciplinary Information Sciences. – 2012. – Vol. 18, № 2. – P. 123–134. 3. Lukac M. Natural image understanding using algorithm selection and high level feedback / M. Lukac, M. Kameyama, K. Hiura // SPIE Intelligent Robots and Computer Vision XXX: algorithms and Techniques. – 2013. DOI: 10.1117/12.2008593 4. Zhang Y. Optimal selection of segmentation algorithms based on performance evaluation / Y. Zhang and H. Luo // Optical Engineering. – 2000. – Vol. 39, № 6. – P. 1450–1456. 5. Yong X. Optimal selection of image segmentation algorithms based on performance prediction / X. Yong, D. Feng, Z. Rongchun // Proceedings of the Pan-Sydney Area Workshop on Visual Information Processing (VIP2003). – 2003. – P. 105–108. 6. Yu L. Feature selection for high-dimensional data: A fast correlationbased filter solution / L. Yu, H. Liu // Proceedings of the 20th International Conference on Machine Learning. – 2004. – P. 856–863. 7. Takemoto S. Algorithm selection for intracellular image segmentation based on region similarity / S. Takemoto, H. Yokota // Ninth International Conference on Intelligent Systems Design and Applications. –2009. – P. 1413–1418. DOI: 10.1109/ISDA.2009.205 8. Lukac M. Bayesian-network-based algorithm selection with high level representation feedback for real-world intelligent systems / M. Lukac, and M. Kameyama // Information Technology in Industry. – 2015. – Vol. 3, № 1. – P. 10–15. 9. Peng B. Parameter selection for graph cut based image segmentation / B. Peng, V. Veksler // In Proceedings of the British Conference on Computer Vision. – 2008. – P. 16.1–16.10. DOI: 10.5244/C.22.16 10. Hoiem D. Closing the loop on scene interpretation / D. Hoiem, A. A. Efros, M. Hebert // Proc. Computer Vision and Pattern Recognition (CVPR). – 2008. – P. 1–8. DOI: 10.1109/ CVPR.2008.4587587

Keywords:

0
2016
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Radio Electronics, Computer Science, Control

Journal Type :   Uluslararası

Metrics
Article : 805
Cite : 251
2023 Impact : 0.025
Radio Electronics, Computer Science, Control