User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
  Citation Number 2
 Views 31
An air-drying model for piled logs of Eucalyptus globulus and Eucalyptus nitens in Chile
2015
Journal:  
New Zealand Journal of Forestry Science
Author:  
Abstract:

Water accounts for around half of the total mass in living trees, and therefore large savings can be achieved if logs are dried before transporting or burning. Methods: An air-drying model for piled logs of Eucalyptus globulus Labill. and Eucalyptus nitens H.Deane & Maiden was developed. Daily moisture content (MC) loss was modelled based on meteorological variables and pile characteristics. The trial had a factorial design with two species, two debarking treatments (with or without bark) and two log lengths (244 and 350 cm). Independent trials started in July 2007 (winter), October 2007 (spring) and January 2008 (summer). There were five replicate piles per season and treatment. Wood pile masses were weighted weekly or twice weekly using a crane, a 10,000 kg balance and chains to hold the piles. Results: The main and interactive effects of seasons and treatments on daily MC loss were highly significant. However, the effect of season (climate) was far greater than the main effects of treatments or the season × treatment interaction. Overall, E. globulus dried 20 % faster than E. nitens, debarked logs dried 8 % faster than barked logs and 244 cm logs dried 3 % faster than 350 cm logs. Daily MC loss for the current day was better explained by a power function of MC at the start of the day, daily air relative humidity, daily air temperature and the number of logs per square metre of pile cross-section (or an equivalent average log diameter). Conclusions: The air-drying model for piled logs can be used to predict drying times (days) to achieve a given target moisture content, providing a new tool for decision-making in forest transport and industrial planning.

Keywords:

Citation Owners
Attention!
To view citations of publications, you must access Sobiad from a Member University Network. You can contact the Library and Documentation Department for our institution to become a member of Sobiad.
Off-Campus Access
If you are affiliated with a Sobiad Subscriber organization, you can use Login Panel for external access. You can easily sign up and log in with your corporate e-mail address.
Similar Articles












New Zealand Journal of Forestry Science

Field :   Ziraat, Orman ve Su Ürünleri

Journal Type :   Uluslararası

Metrics
Article : 206
Cite : 81
2023 Impact : 0.114
Quarter
Basic Field of Agriculture, Forestry and Fisheries
Q3
48/73

New Zealand Journal of Forestry Science