User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 2
Fault identification of catenary dropper based on improved CapsNet
2020
Journal:  
Turkish Journal of Electrical Engineering and Computer Science
Author:  
Abstract:

Traditional fault identification algorithms applied to catenary dropper suffer from various problems due to its small contact area. These problems include misidentification and lower recognition rate of the faulty dropper. Compared with the traditional convolutional neural network, the vector is utilized as the input of the capsule network (CapsNet) for the first time, which can well retain the feature information such as the direction and angle of the target, and is more suitable for identifying the dropper under complex background. Therefore, this paper proposes a dropper fault identification algorithm based on improved capsule network. The convolutional layer of traditional 9×9 capsule network is simplified through 1 × 1 reduction layer and 3 × 3 convolutional layer, and the optimization algorithm is adopted for parameter optimization to shorten the training weight time. At the same time, the output can retain more information such as direction and angle, which can accurately identify the breakage and falling of current carrying broken. Thus, in order to better improve the accuracy and real-time of detecting the fault dropper from a running train operation, a dropper fault identification algorithm based on an improved CapsNet is proposed in this paper. Experimental results show that the improved CapsNet is well-suited for fault identification of catenary dropper, as it can effectively remove the interference caused by the complex background on the dropper image, and identify the image containing the faulty dropper with a higher recognition rate.

Keywords:

null
2020
Author:  
0
2020
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Turkish Journal of Electrical Engineering and Computer Science

Field :   Mühendislik

Journal Type :   Uluslararası

Metrics
Article : 2.879
Cite : 1.406
2023 Impact : 0.016
Turkish Journal of Electrical Engineering and Computer Science