User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 9
 Downloands 2
Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse
2021
Journal:  
Agriculture
Author:  
Abstract:

Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but require accurate prediction of environmental factors to ensure ideal crop growth and management efficiency. Due to the limitations of existing predictors in dealing with massive, nonlinear, and dynamic temporal data, this study proposes a bidirectional self-attentive encoder–decoder framework (BEDA) to construct the long-time predictor for multiple environmental factors with high nonlinearity and noise in a smart greenhouse. Firstly, the original data are denoised by wavelet threshold filter and pretreatment operations. Secondly, the bidirectional long short-term-memory is selected as the fundamental unit to extract time-serial features. Then, the multi-head self-attention mechanism is incorporated into the encoder–decoder framework to improve the prediction performance. Experimental investigations are conducted in a practical greenhouse to accurately predict indoor environmental factors (temperature, humidity, and CO2) from noisy IoT-based sensors. The best model for all datasets was the proposed BEDA method, with the root mean square error of three factors’ prediction reduced to 2.726, 3.621, and 49.817, and with an R of 0.749 for temperature, 0.848 for humidity, and 0.8711 for CO2 concentration, respectively. The experimental results show that the favorable prediction accuracy, robustness, and generalization of the proposed method make it suitable to more precisely manage greenhouses.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Agriculture

Journal Type :   Uluslararası

Metrics
Article : 9.836
Cite : 6.496
2023 Impact : 0.04
Agriculture