User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 18
 Downloands 4
γ-Lie structures in γ-prime gamma rings with derivations
2015
Journal:  
Journal of Algebra Combinatorics Discrete Structures and Applications
Author:  
Abstract:

Let $M$ be a $\gamma$-prime weak Nobusawa $\Gamma $-ring and $d\neq 0$ be a $k$-derivation of $M$ such that $k\left( \gamma \right) =0$ and $U$ be a $\gamma$-Lie ideal of $M$. In this paper, we introduce definitions of $\gamma$-subring, $\gamma$-ideal, $\gamma$-prime $\Gamma$-ring and $\gamma$-Lie ideal of M and prove that if $U\nsubseteq C_{\gamma}$, $char$M$\neq2$ and $d^3\neq0$, then the $\gamma$-subring generated by $d(U)$ contains a nonzero ideal of $M$. We also prove that if $[u,d(u)]_{\gamma}\in C_{\gamma}$ for all $u\in U$, then $U$ is contained in the $\gamma$-center of $M$ when char$M\neq2$ or $3$. And if $[u,d(u)]_{\gamma}\in C_{\gamma}$ for all $u\in U$ and $U$ is also a $\gamma$-subring, then $U$ is $\gamma$-commutative when char$M=2$.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Journal of Algebra Combinatorics Discrete Structures and Applications

Field :   Fen Bilimleri ve Matematik; Mühendislik

Journal Type :   Uluslararası

Metrics
Article : 169
Cite : 4
Journal of Algebra Combinatorics Discrete Structures and Applications