User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 14
CHARACTERISATION OF 3D PRINTED HYDROXYAPITATE POWDER (HAp) FILLED POLYLACTIC ACID (PLA) COMPOSITES
2022
Journal:  
International Journal of 3D Printing Technologies and Digital Industry
Author:  
Abstract:

Biomaterials are used in the treatment of advanced orthopedic diseases. Hydroxyapatite (HA), a bioceramic material, is important in the calcium phosphate family. Since hydroxyapatite exhibits low mechanical properties, it is used together with polylactic acid (PLA), which has biodegradable properties. In this study, HA was obtained by the combustion method and its morphological properties were analyzed by scanning electron microscope (SEM) and chemical analyzes by X-ray spectrometry. 3D mechanical test specimens were produced by the Fused Deposition Melting (FDM) technique using PLA-HA composite filaments by using the obtained HA as an additive material. Thermoplastic elastomer was used to examine the effect of compatibilizer in PLA and HA composite materials. Physical (SEM), thermal (thermogravimetric analysis, TGA), and mechanical properties (tensile and compression tests) of PLA-HA composite materials were investigated. According to the results obtained, TPE may have improved the chemical bonds that will form in PLA-HA composite materials. With the new bonds formed and the regular distribution of Hydroxyapatite, the interfacial bonds in PLA+HAP+TPE are better than the others and their thermal stability is more substantial. Due to this thermal stability, at least a percentage weight (70%) loss was seen in PLA+HAP+TPE. When the mechanical properties are examined, the tensile and compressive strength values of PLA+HAP+TPE composites are 29.2% and 12.5% higher than those of PLA+HAP composites, respectively.

Keywords:

0
2022
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles


International Journal of 3D Printing Technologies and Digital Industry

Journal Type :   Uluslararası

Metrics
Article : 256
Cite : 255
International Journal of 3D Printing Technologies and Digital Industry