User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
  Citation Number 1
 Views 17
 Downloands 1
Multi-sensor Fusion Workflow for Accurate Classification and Mapping of Sugarcane Crops
2019
Journal:  
Engineering, Technology & Applied Science Research
Author:  
Abstract:

Abstract This study aims to assess the classification accuracy of a novel mapping workflow for sugarcane crops identification that combines light detection and ranging (LiDAR) point clouds and remotely-sensed orthoimages. The combined input data of plant height LiDAR point clouds and multispectral orthoimages were processed using a technique called object-based image analysis (OBIA). The use of multi-source inputs makes the mapping workflow unique and is expected to yield higher accuracy compared to the existing techniques. The multi-source inputs are passed through five phases: data collection, data fusion, image segmentation, accuracy validation, and mapping. Data regarding sugarcane crops were randomly collected in ten sampling sites in the study area. Five out of the ten sampling sites were designated as training sites and the remaining five as validation sites. Normalized digital surface model (nDSM) was created using the LiDAR data. The nDSM was paired with Orthophoto and segmented for feature extraction in OBIA by developing a rule-set in eCognition software. A rule-set was created to classify and to segment sugarcane using nDSM and Orthophoto from the training and validation area sites. A machine learning algorithm called support vector machine (SVM) was used to classify entities in the image. The SVM was constructed using the nDSM. The height parameter nDSM was applied, and the overall accuracy assessment was 98.74% with Kappa index agreement (KIA) 97.47%, while the overall accuracy assessment of sugarcane in the five validation sites were 94.23%, 80.28%, 94.50%, 93.59%, and 93.22%. The results suggest that the mapping workflow of sugarcane crops employing OBIA, LiDAR data, and Orthoimages is attainable. The techniques and process used in this study are potentially useful for the classification and mapping of sugarcane crops.

Keywords:

0
2019
Author:  
Citation Owners
Attention!
To view citations of publications, you must access Sobiad from a Member University Network. You can contact the Library and Documentation Department for our institution to become a member of Sobiad.
Off-Campus Access
If you are affiliated with a Sobiad Subscriber organization, you can use Login Panel for external access. You can easily sign up and log in with your corporate e-mail address.
Similar Articles








Engineering, Technology & Applied Science Research

Journal Type :   Uluslararası

Metrics
Article : 1.845
Cite : 2.898
2023 Impact : 0.733
Engineering, Technology & Applied Science Research