Kullanım Kılavuzu
Neden sadece 3 sonuç görüntüleyebiliyorum?
Sadece üye olan kurumların ağından bağlandığınız da tüm sonuçları görüntüleyebilirsiniz. Üye olmayan kurumlar için kurum yetkililerinin başvurması durumunda 1 aylık ücretsiz deneme sürümü açmaktayız.
Benim olmayan çok sonuç geliyor?
Birçok kaynakça da atıflar "Soyad, İ" olarak gösterildiği için özellikle Soyad ve isminin baş harfi aynı olan akademisyenlerin atıfları zaman zaman karışabilmektedir. Bu sorun tüm dünyadaki atıf dizinlerinin sıkça karşılaştığı bir sorundur.
Sadece ilgili makaleme yapılan atıfları nasıl görebilirim?
Makalenizin ismini arattıktan sonra detaylar kısmına bastığınız anda seçtiğiniz makaleye yapılan atıfları görebilirsiniz.
 Görüntüleme 55
 İndirme 8
Dikey Kalkış ve İniş Sistemi Modeli için Derin Pekiştirmeli Öğrenme Tabanlı Kontrolör Tasarımı
2021
Dergi:  
Avrupa Bilim ve Teknoloji Dergisi
Yazar:  
Özet:

Bu çalışmada, yapay sinir ağları ve pekiştirmeli öğrenmenin birleşiminden oluşan Deep Deterministic Policy Gradient (DDPG) derin pekiştirme öğrenme algoritması Dikey Kalkış ve İniş (VTOL) sistemi modeline yunuslama (pitch) açısını kontrol edebilme amacıyla uygulanmıştır. Bu algoritma, Oransal İntegral Türevsel (PID) kontrolör gibi geleneksel kontrol algoritmaları için en uygun kontrolör katsayıları bulunsa dahi kontrol edilecek sistem üzerindeki bozucu etki ve istenmeyen ortam etkilerini elimine edebilecek kontrol sinyali üretememelerinden dolayı seçilmiştir. Belirtilen bu problemi çözebilmek için kontrol amacına yönelik belirlenen bir ödül fonksiyonuna göre ödülü maksimize edebilecek yapısı ve yapay sinir ağlarının genelleştirme yeteneğini arkasına alan kontrol aksiyon değerleri üretebilen derin pekiştirmeli öğrenme yöntemlerinden sürekli eylem uzayına sahip DDPG algoritmasının, Simulink ortamında VTOL sisteminin matematiksel modelinde sinüzoidal bir referans için eğitimi gerçekleştirilmiştir. Belirtilen VTOL sistemi için çıkış olan yunuslama açısının, DDPG algoritması için sinusoidal ve sabit referans için elde edilen izleme başarımları, geleneksel PID kontrolör algoritmasının izleme başarımları ile ortalama kare hatası, integral kare hatası, integral mutlak hatası, yüzde aşım ve oturma zamanı cinsinden karşılaştırılmıştır ve edinilen sonuçlar simülasyon çalışmaları ile sunulmuştur.

Anahtar Kelimeler:

Deep Reinforcement Learning Based Controller Design For Model Of The Vertical Take Off and Landing System
2021
Yazar:  
Özet:

In this study, the Deep Deterministic Policy Gradient (DDPG) algorithm, which consists of a combination of artificial neural networks and reinforcement learning, was applied to the Vertical Takeoff and Landing (VTOL) system model in order to control the pitch angle. This algorithm was selected because conventional control algorithms such as Proportional Integral Derivative (PID) controllers which cannot always generate a suitable control signal eliminating the disturbance and unwanted environment effects on the considered system. In order to control the system, training was carried out for a sinusoidal reference in the mathematical model of the VTOL system in the Simulink environment, through the DDPG algorithm with continuous action space from deep reinforcement learning methods that can produce control action values that take the structure that can maximize the reward according to a determined reward function for the purpose of control and the generalization ability of artificial neural networks. For sinusoidal reference and a constant reference, tracking error performances obtained for the pitch angle, which is the output for the specified VTOL system, were compared with the conventional PID controller performance in terms of mean square error, integral square error, integral absolute error, percentage overshoot and settling time. The obtained results are presented via the simulations studies.

Anahtar Kelimeler:

Atıf Yapanlar
Bilgi: Bu yayına herhangi bir atıf yapılmamıştır.
Benzer Makaleler








Avrupa Bilim ve Teknoloji Dergisi

Alan :   Fen Bilimleri ve Matematik; Mühendislik

Dergi Türü :   Uluslararası

Metrikler
Makale : 3.175
Atıf : 5.683
2023 Impact/Etki : 0.178
Avrupa Bilim ve Teknoloji Dergisi