User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
  Citation Number 2
 Views 21
 Downloands 5
The determination of effect of windshield ınclination angle on drag coefficient of a bus model by CFD method
2020
Journal:  
International Journal of Automotive Engineering and Technologies
Author:  
Abstract:

This paper focuses on determining of windshield inclination angle to aerodynamic drag coefficient for a 1/64 scaled bus model by Computational Fluid Dynamics (CFD) method. The bus models were designed by using SolidWorks program in 4 different windshield inclination angle (α=0˚, α=15˚, α=30˚, α=45˚). Flow analysis were performed at 15 m/s, 20 m/s, 25 m/s and 30 m/s free flow velocities and between the range of 173000-346000 Reynolds numbers in Fluent® program. To provide geometric similarity 1/64 scaled licensed model bus was used in order to obtain drawing datas. The blockage rate was 3.39% for the kinematic similarity. Reynolds number independence was used to ensure dynamic similarity in study. The effect of windshield inclination angle to drag coefficient was determined by CFD method. The aerodynamic drag coefficients (CD) of the bus models were determined as 0.759 for model 1, 0.731 for model 2, 0.683 for model 3 and 0.623 for model 4. There are 17.92%, 14.84% and 8.76% drag reduction in model 4 which has α=45˚ windshield inclination angle when compared model 1 (α=0˚), model 2 (α=15˚) and model 3 (α=30˚) respectively. 0.4% drag reduction was obtained by increasing every 1 degree of windshield angle. The windshield inclination angle considerably affects drag forces on buses. The distribution of total drag was determined as pressure-friction based. The flow visualizations were obtained and flow structure around of bus models was detected.

Keywords:

0
2020
Author:  
Citation Owners
Attention!
To view citations of publications, you must access Sobiad from a Member University Network. You can contact the Library and Documentation Department for our institution to become a member of Sobiad.
Off-Campus Access
If you are affiliated with a Sobiad Subscriber organization, you can use Login Panel for external access. You can easily sign up and log in with your corporate e-mail address.
Similar Articles






International Journal of Automotive Engineering and Technologies

Field :   Mühendislik

Journal Type :   Uluslararası

Metrics
Article : 220
Cite : 125
2023 Impact : 0.108
International Journal of Automotive Engineering and Technologies