User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 10
VLDNet: An Ultra-Lightweight Crop Disease Identification Network
2023
Journal:  
Agriculture
Author:  
Abstract:

: Existing deep learning methods usually adopt deeper and wider network structures to achieve better performance. However, we found that this rule does not apply well to crop disease identification tasks, which inspired us to rethink the design paradigm of disease identification models. Crop diseases belong to fine-grained features and lack obvious patterns. Deeper and wider network structures will cause information loss of features, which will damage identification efficiency. Based on this, this paper designs a very lightweight disease identification network called VLDNet. The basic module VLDBlock of VLDNet extracts intrinsic features through 1 × 1 convolution, and uses cheap linear operations to supplement redundant features to improve feature extraction efficiency. In inference, reparameterization technology is used to further reduce the model size and improve inference speed. VLDNet achieves state-of-the-art model (SOTA) latency-accuracy trade-offs on self-built and public datasets, such as equivalent performance to Swin-Tiny with a parameter size of 0.097 MB and 0.04 G floating point operations (FLOPs), while reducing parameter size and FLOPs by 297 times and 111 times, respectively. In actual testing, VLDNet can recognize 221 images per second, which is far superior to similar accuracy models. This work is expected to further promote the application of deep learning-based crop disease identification methods in practical production.

Keywords:

0
2023
Journal:  
Agriculture
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Agriculture

Journal Type :   Uluslararası

Metrics
Article : 9.836
Cite : 6.492
2023 Impact : 0.04
Agriculture