User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
  Citation Number 2
 Views 1
An Effective Pyramid Neural Network Based on Graph-Related Attentions Structure for Fine-Grained Disease and Pest Identification in Intelligent Agriculture
2023
Journal:  
Agriculture
Author:  
Abstract:

: In modern agriculture and environmental protection, effective identification of crop diseases and pests is very important for intelligent management systems and mobile computing application. However, the existing identification mainly relies on machine learning and deep learning networks to carry out coarse-grained classification of large-scale parameters and complex structure fitting, which lacks the ability in identifying fine-grained features and inherent correlation to mine pests. To solve existing problems, a fine-grained pest identification method based on a graph pyramid attention, convolutional neural network (GPA-Net) is proposed to promote agricultural production efficiency. Firstly, the CSP backbone network is constructed to obtain rich feature maps. Then, a cross-stage trilinear attention module is constructed to extract the abundant fine-grained features of discrimination portions of pest objects as much as possible. Moreover, a multilevel pyramid structure is designed to learn multiscale spatial features and graphic relations to enhance the ability to recognize pests and diseases. Finally, comparative experiments executed on the cassava leaf, AI Challenger, and IP102 pest datasets demonstrates that the proposed GPA-Net achieves better performance than existing models, with accuracy up to 99.0%, 97.0%, and 56.9%, respectively, which is more conducive to distinguish crop pests and diseases in applications for practical smart agriculture and environmental protection.

Keywords:

0
2023
Journal:  
Agriculture
Author:  
Citation Owners
Attention!
To view citations of publications, you must access Sobiad from a Member University Network. You can contact the Library and Documentation Department for our institution to become a member of Sobiad.
Off-Campus Access
If you are affiliated with a Sobiad Subscriber organization, you can use Login Panel for external access. You can easily sign up and log in with your corporate e-mail address.
Similar Articles












Agriculture

Journal Type :   Uluslararası

Metrics
Article : 9.835
Cite : 6.420
2023 Impact : 0.04
Agriculture