Kullanım Kılavuzu
Neden sadece 3 sonuç görüntüleyebiliyorum?
Sadece üye olan kurumların ağından bağlandığınız da tüm sonuçları görüntüleyebilirsiniz. Üye olmayan kurumlar için kurum yetkililerinin başvurması durumunda 1 aylık ücretsiz deneme sürümü açmaktayız.
Benim olmayan çok sonuç geliyor?
Birçok kaynakça da atıflar "Soyad, İ" olarak gösterildiği için özellikle Soyad ve isminin baş harfi aynı olan akademisyenlerin atıfları zaman zaman karışabilmektedir. Bu sorun tüm dünyadaki atıf dizinlerinin sıkça karşılaştığı bir sorundur.
Sadece ilgili makaleme yapılan atıfları nasıl görebilirim?
Makalenizin ismini arattıktan sonra detaylar kısmına bastığınız anda seçtiğiniz makaleye yapılan atıfları görebilirsiniz.
 ASOS INDEKS
  Atıf Sayısı 8
 Görüntüleme 17
LSTM Derin Öğrenme Yaklaşımı ile Covid-19 Pandemi Sürecinde Twitter Verilerinden Duygu Analizi
2021
Dergi:  
Acta Infologica
Yazar:  
Özet:

Dünyada yaşanan toplumsal olaylar için insanların düşüncelerini anlamak ve bu düşünceleri analiz ederek birtakım çıkarımlar yapmak oldukça önemlidir. Bu analiz ve çıkarımlar sayesinde çeşitli projeler başlatılabilir ve karar verme süreçleri oluşturulabilir. Bu amaçla kullanılan işlemlerden biri de metinlerin çeşitli bilgisayar algoritmaları ile sınıflandırılmasıyla gerçekleştirilen duygu analizi işlemidir. Duygu analizini gerçekleştirmek için kullanılan yöntemler genel olarak sözlük tabanlı yöntemler ve makine öğrenmesi yaklaşımları olarak ikiye ayrılır. Bu makalede, dünyayı etkisi altına alan ve halen devam etmekte olan koronavirüs pandemisi (Covid-19) ile ilgili Twitter sosyal medya platformunda sık konuşulan bir takım terimler gözönüne alınarak duygu analizi çalışması gerçekleştirilmiştir. Bunun için, konu ile ilgili bazı Türkçe başlıklar toplanmış ve bu başlıklar olumlu ve olumsuz düşünceler şeklinde sınıflandırılarak duygu analizi yapılmıştır. Bu analiz için derin öğrenme yöntemlerinden biri olan Uzun Kısa Süreli Hafıza (LSTM) yapısı kullanan bir sistem önerilmiştir. Önerilen bu sistem oluşturulan veri kümelerine uygulanmış ve maksimum %97 doğruluk başarısı elde edilmiştir

Anahtar Kelimeler:

Atıf Yapanlar
Dikkat!
Yayınların atıflarını görmek için Sobiad'a Üye Bir Üniversite Ağından erişim sağlamalısınız. Kurumuzun Sobiad'a üye olması için Kütüphane ve Dokümantasyon Daire Başkanlığı ile iletişim kurabilirsiniz.
Kampüs Dışı Erişim
Eğer Sobiad Abonesi bir kuruma bağlıysanız kurum dışı erişim için Giriş Yap Panelini kullanabilirsiniz. Kurumsal E-Mail adresiniz ile kolayca üye olup giriş yapabilirsiniz.
Benzer Makaleler








Acta Infologica

Dergi Türü :   Uluslararası

Metrikler
Makale : 101
Atıf : 124
Acta Infologica