User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 21
 Downloands 2
Characterization and In Vitro evaluation of a novel coated nanocomposite porous 3D scaffold for bone repair
2019
Journal:  
Iraqi Journal of Veterinary Sciences
Author:  
Abstract:

The aim of this study is to tissue engineer a 3D scaffold that can be used for load bearing segmental bone defects (SBDs) repair. Three different scaffolds were fabricated using cockle shell-derived CaCO3 aragonite nanoparticles (CCAN), gelatin, dextran and dextrin with coated framework via Freeze-Drying Method (FDM) labeled as 5211, 5211GTA+Alginate, 5211PLA. Scaffolds were assessed using Scanning Electron Microscopy (SEM). The cytocompatibility of the organized scaffolds was assessed using cells multiplication and alkaline phosphatase (ALP) concentration via In Vitro cell culture using human Fetal OsteoBlast cells line (hFOB). The results showed a substantial difference in ALP concentrations between the cultures of different scaffolds leachable medium during the study period. The biological evaluation also showed that three scaffolds did enhanced the osteoblast proliferation rate and improved the osteoblast function as demonstrated by the significant increase in ALP concentration. Engineering analyses showed that scaffolds possessed 3D interconnected homogenous porous structure with a porosity ranging 6%-49%, pore sizes ranging 8-345 µm, mechanical strength ranging 20-65 MPa, young’s modulus ranging 166-296 MPa and enzymatic degradation rate between 16%-38% within 2-10 weeks. The in vitro evaluation revealed that the scaffold 5211, 5211GTA+Alginate and 5211PLA fulfill all the main requirements to be considered as an ideal bone replacement.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Iraqi Journal of Veterinary Sciences

Field :   Sağlık Bilimleri

Journal Type :   Uluslararası

Metrics
Article : 924
Cite : 201
Iraqi Journal of Veterinary Sciences