User Guide
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 17
Effects of position angles in twin-jet spray applications on droplet penetration of hydraulic nozzles
2021
Journal:  
Turkish Journal of Agriculture and Forestry
Author:  
Abstract:

This study was conducted to determine the effects of different position angles in twin-jet spray applications on droplet penetration of different nozzle types. Seven different nozzle types (standard flat fan, ST; narrow flat fan, STN; multirange, LU; low-drift potential, AD; air-induction, IDK; twin-jet air-induction, IDKT) were used and nozzles were positioned +15° along the forward direction, perpendicular to ground surface 0? and reverse direction of forward -15°. Spray experiments at 100 L/ha constant application volume were conducted under controlled conditions of a closed facility. Water sensitive paper (WSP) was used as sampling surface. WSP samples were placed vertically and horizontally over both the metal frames and root collar of artificial plants. The present findings revealed that transport potential of spray droplets was quite lower on vertical planes than on horizontal planes. The greatest coverage was achieved with ST, STN, LU, and SC-type nozzles producing fine droplets. Compared to open targets, the coverage ratios around the root collars were quite low and insufficient. In all spray treatments, coverage ratio on the vertical planes was 86.1% lower than the coverage ratio on the horizontal plane. In other words, coverage ratio on the horizontal plane was 7.2 times greater than the coverage ratio on the vertical plane. Transfer efficiency of medium and coarse droplet-producing nozzles to root collars was greater than the transfer efficiency of fine droplet-producing nozzles. Such a ratio for AD, IDKT, and IDK-type nozzles was determined as 37.06, 37.85, and 41.02% respectively. According to the present findings, effects of nozzle position angle on droplet penetration were not found to be significant. However, nozzle position angle along the forward direction increased coverage ratios on the vertical planes.

Keywords:

null
2021
Author:  
0
2021
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Turkish Journal of Agriculture and Forestry

Field :   Ziraat, Orman ve Su Ürünleri

Journal Type :   Uluslararası

Metrics
Article : 1.899
Cite : 5.346
2023 Impact : 0.214
Turkish Journal of Agriculture and Forestry