User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 28
 Downloands 8
Investigation of laminar forced convection heat transfer of nanofluids through flat plate solar collector
2021
Journal:  
Journal of Thermal Engineering
Author:  
Abstract:

The paper analyzes laminar forced convection heat transfer for both single and mixture phase models utilizing Al2O3-water and CuO-water nanofluids as the working fluid and examines the effect of internal fins in the collector tubes in order to improve collector efficiency. A physical model with governing equations has been defined. Finite volume method has been utilized for discretizing governing equations and finite element method has been utilized for three-dimensional analysis of solar plate model with finned tubes. Convective heat transfer coefficient, Nusselt number and shear stress have been analyzed for Reynolds numbers from 200 to 700 with 0-5% volume fractions of nanofluid. Moreover, the efficiency of the collector has been investigated for constant flow rates from 0.02 to 0.04 mL/s and variable overall heat loss coefficient for the same range of volume fractions of nanofluid. It has been found that increment of shear stress and heat transfer coefficient occurred with the increment of concentration of nanoparticles and the Reynolds number. Investigation of particle size has not shown any notable variation with the mixture phase model. Mixture-phase model gives comparatively lower values due to the reduction of viscosity near the wall. Noticeable increment of efficiency has been observed by changing working fluid from Al2O3-water to CuO-water which has been further improved by utilizing variable overall heat loss coefficient. Efficiency increases up to 6.5% and 8.7% than the base fluid for utilizing Al2O3-water and CuO-water nanofluid respectively. Additionally, utilizing internal fins to the riser tubes, the efficiency increases up to 11%.

Keywords:

null
2021
Author:  
0
2021
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles








Journal of Thermal Engineering

Field :   Mühendislik

Journal Type :   Uluslararası

Metrics
Article : 493
Cite : 243
2023 Impact : 0.05
Journal of Thermal Engineering