User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 3
EFFECT OF MACHINING PARAMETERS ON SURFACE ROUGHNESS, POWER CONSUMPTION, AND MATERIAL REMOVAL RATE OF ALUMINIUM 6065-SI-MWCNT METAL MATRIX COMPOSITE IN TURNING OPERATIONS
2021
Journal:  
IIUM Engineering Journal
Author:  
Abstract:

Abstract Nanocomposites were prepared with Al-6065-Si and multi walled carbon nanotubes of 1 wt.% as reinforcement through the stir-casting method. Fabricated nanocomposites were machined on a lathe machine using a tungsten carbide tool. The study investigated the multi-objective optimization of the turning operation. Cutting velocity, feed, and depth of cut were considered for providing minimum Surface Roughness of the workpiece. Also, the power consumed by the lathe machine with maximum metal removal rate was examined by surface response methodology. The design of experiments was developed based on rotational central composite design. Analysis of variance was executed to investigate the adequacy and the suitable fit of the developed mathematical models. Multiple regression models were used to represent the relationship between the input and the desired output variables. The analysis indicates that the feed is the most influential factor that effects the surface roughness of the workpiece. Cutting speed and the depth of cut are two other important factors that proportionally influence the power consumed by the lathe tool as compared to the feed rate.

Keywords:

0
2021
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles








IIUM Engineering Journal

Journal Type :   Uluslararası

IIUM Engineering Journal