User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 9
 Downloands 3
Performance of perovskite solar cell coated with graphene oxide as hole transport layer
2021
Journal:  
Eastern-European Journal of Enterprise Technologies
Author:  
Abstract:

Organic metal halide perovskite has recently shown great potential for applications, as it has the advantages of low cost, excellent photoelectric properties, and high power conversion efficiency. The Hole Transport Material (HTM) is one of the most critical components in Perovskite Solar Cells (PSC). It has the function of optimizing the interface, adjusting the energy compatibility, and obtaining higher PCE. The inorganic p-type semiconductor is an alternative HTM due to its chemical stability, higher mobility, increased transparency in the visible region, and general valence band energy level (VB). Here we report the use of the Graphene Oxide (GO) layer as a Hole Transport Layer (HTL) to improve the perovskite solar cells' performance. The crystal structure and thickness of GO significantly affect the increase in solar cell efficiency. This perovskite film must show a high degree of crystallinity. The configuration of the perovskite material is FTO/NiO/GO/CH3NH3PbI3/ZnO/Ag. GO as a Hole Transport Layer can increase positively charged electrons' mobility to improve current and voltage. As a blocking layer that can prevent recombination. The GO can make the perovskite interface layer with smoother holes, and molecular uniformity occurs to reduce recombination. The method used in this study is by using spin coating. In the spin-coating process, the GO layer is coated on top of NiO with variations in the rotation of 700 rpm, 800 rpm, 900 rpm, 1,000 rpm, and 1,500 rpm. The procedure formed different thicknesses from 332.5 nm, 314.7 nm, 256.4 nm, 227.4 to 204.5 nm. The results obtained at a thickness of 227.4 nm reached the optimum efficiency, namely 15,3 %. Thus, the GO material as a Hole Transport Layer can support solar cell performance improvement by not being too thick and thin Author Biographies Rustan Hatib, Brawijaya University Doctoral Student in Mechanical Engineering Department of Mechanical Engineering

Keywords:

null
2021
Author:  
0
2021
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles








Eastern-European Journal of Enterprise Technologies

Field :   Fen Bilimleri ve Matematik

Journal Type :   Uluslararası

Metrics
Article : 4.764
Cite : 4.486
Eastern-European Journal of Enterprise Technologies