User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 29
 Downloands 3
Weed Detection in Peanut Fields Based on Machine Vision
2022
Journal:  
Agriculture
Author:  
Abstract:

: The accurate identification of weeds in peanut fields can significantly reduce the use of herbicides in the weed control process. To address the identification difficulties caused by the cross-growth of peanuts and weeds and by the variety of weed species, this paper proposes a weed identification model named EM-YOLOv4-Tiny incorporating multiscale detection and attention mechanisms based on YOLOv4-Tiny. Firstly, an Efficient Channel Attention (ECA) module is added to the Feature Pyramid Network (FPN) of YOLOv4-Tiny to improve the recognition of small target weeds by using the detailed information of shallow features. Secondly, the soft Non-Maximum Suppression (soft-NMS) is used in the output prediction layer to filter the best prediction frames to avoid the problem of missed weed detection caused by overlapping anchor frames. Finally, the Complete Intersection over Union (CIoU) loss is used to replace the original Intersection over Union (IoU) loss so that the model can reach the convergence state faster. The experimental results show that the EM-YOLOv4-Tiny network is 28.7 M in size and takes 10.4 ms to detect a single image, which meets the requirement of real-time weed detection. Meanwhile, the mAP on the test dataset reached 94.54%, which is 6.83%, 4.78%, 6.76%, 4.84%, and 9.64% higher compared with YOLOv4-Tiny, YOLOv4, YOLOv5s, Swin-Transformer, and Faster-RCNN, respectively. The method has much reference value for solving the problem of fast and accurate weed identification in peanut fields.

Keywords:

2022
Journal:  
Agriculture
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Agriculture

Journal Type :   Uluslararası

Metrics
Article : 9.836
Cite : 6.501
2023 Impact : 0.04
Agriculture