User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
  Citation Number 2
 Views 14
Electrospinning of nanofibrous polycaprolactone (PCL) and collagen-blended polycaprolactone for wound dressing and tissue engineering
2014
Journal:  
Usak University Journal of Material Sciences
Author:  
Abstract:

Fabrication of nanofibrous biomaterials based on natural materials through various techniques is a popular research topic, particularly for biomedical applications. Electrospinning, a well-established technique for nanofiber production has also been extended for producing nanofibrous structures of natural materials that mimic natural extracellular matrix of mammalian tissues. Collagen nanofiber production utilizes hexafluoro propanol (HFP) as a solvent for electrospinning. A novel cost-effective electrospun nanofibrous membrane is established for wound dressing and allogeneic cultured epidermal substitute through the cultivation of human dermal keratinocytes for skin defects. Several synthetic polymers such as polycaprolactone (PCL) are generally electrospun for tissue engineering applications because of their remarkable mechanical stability and slow degradation rates. The large surface area of the polymer nanofibers with specific modifications facilitates cell adhesion and control of their cellular functions. The objectives of this study were to optimize fabrication parameters of electrospun nanofibrous membranes from biodegradable PCL and collagen-blended nanofibrous membranes to combine mechanical integrity and spinnability of PCL with high biocompatibility of collagen, and to examine keratinocyte attachment, morphology, proliferation, and cell-matrix interactions. Results prove that the porous nanofibrous PCL and modified PCL-blended collagen nanofibrous membranes are suitable for the attachment and proliferation of keratinocytes, and might have the potential to be applied as wound dressing as well as in tissue engineering as an epidermal substitute for the treatment of skin defects and burn wounds.

Keywords:

Citation Owners
Attention!
To view citations of publications, you must access Sobiad from a Member University Network. You can contact the Library and Documentation Department for our institution to become a member of Sobiad.
Off-Campus Access
If you are affiliated with a Sobiad Subscriber organization, you can use Login Panel for external access. You can easily sign up and log in with your corporate e-mail address.
Similar Articles












Usak University Journal of Material Sciences

Journal Type :   Uluslararası

Metrics
Article : 41
Cite : 3
Usak University Journal of Material Sciences