User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 11
 Downloands 3
Optimal Design Method for Absorption Heat Pump Cycles Based on Energy-Utilization Diagram
2019
Journal:  
International Journal of Thermodynamics
Author:  
Abstract:

Optimization for energy systems is considered at three levels: synthesis (configuration), design (component characteristics), and operation. This paper aims to evaluate the system performance and margins for improvement of two absorption heat pump systems, including an absorber heat exchanger (AHX) and a solution heat exchanger (SHX), and perform their design/operation optimization efficiently based on an energy-utilization diagram (EUD) for performance improvement. Before optimization, exergy efficiency is higher in the SHX cycle, while the margin for improvement is larger in the AHX cycle. The optimization attempts to reduce exergy destruction in the components where dominant exergy destruction caused by heat transfer occurs. In the absorber, the operating points are adjusted to make the temperature slopes at the hot and cold sides coincide. The design parameters in other components are adjusted to improve the heat transfer performances. The distribution of exergy destruction of each component leads to improve exergy efficiency. After these improvements, exergy efficiency is higher in the AHX cycle. It is concluded that we could efficiently realize the design/operation optimization of thermodynamic systems using an EUD, because the diagram presents both exergy destruction and margin for improvement at the components comprehensively, as well as the operating properties of working fluids.

Keywords:

0
2019
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles












International Journal of Thermodynamics

Journal Type :   Uluslararası

Metrics
Article : 616
Cite : 219
2023 Impact : 0.253
International Journal of Thermodynamics