User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
  Citation Number 2
 Views 19
 Downloands 5
Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions; Combustion Testing with Focus on Stability and Emissions
2005
Journal:  
International Journal of Thermodynamics
Author:  
Abstract:

Exhaust gas recirculation can be applied with the intention of reducing CO2 emissions. When a fraction of the exhaust gas is injected in the entry of a gas turbine, the amount of CO2 in the exhaust gas not being recirculated will be higher and less complicated to capture. However, with this change in combustion air composition, especially the reduced concentration of oxygen, the combustion process will be affected. The lower oxygen concentration decreases the stability and the increased amount of CO2, H2O and N2 will decrease the combustion temperature and thus, the NOx emissions. Testing has been performed on a 65 kW gas turbine combustor, to investigate the effect of adding N2, CO2 and O2 in the combustion process, with focus on stability and emissions of NOx. Results show that adding N2 and CO2 decreases the NOx emissions, whereas O2 addition increases the NOx emissions. The tests have been performed both in a diffusion flame (pilot burner) and a premixed flame (main burner), and for additives being injected with the fuel or with the air stream. Addition into the fuel stream is proven to affect the NOx emissions the most. The stability limits of the flames are indicated with respect to mass-based additive-to-fuel ratios.

Keywords:

Citation Owners
Attention!
To view citations of publications, you must access Sobiad from a Member University Network. You can contact the Library and Documentation Department for our institution to become a member of Sobiad.
Off-Campus Access
If you are affiliated with a Sobiad Subscriber organization, you can use Login Panel for external access. You can easily sign up and log in with your corporate e-mail address.
Similar Articles










International Journal of Thermodynamics

Journal Type :   Uluslararası

Metrics
Article : 616
Cite : 218
2023 Impact : 0.253
International Journal of Thermodynamics