User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 25
 Downloands 1
Identification of a Novel QTL for Chlorate Resistance in Rice (Oryza sativa L.)
2020
Journal:  
Agriculture
Author:  
Abstract:

Chlorate resistance analysis is an effective approach commonly used to distinguish the genetic variation between Oryza sativa L. ssp. indica and japonica, and predict the nitrogen use efficiency (NUE). This study aimed at investigating the response of a doubled haploid (DH) population derived from anther culture of 93-11 × Milyang352 exposed to 0.1% potassium chlorate (KClO3) at the seedling stage. The results revealed that the parental rice lines 93-11 (indica) and Milyang352 (japonica) showed distinctive phenotypic responses. The parental line 93-11 scored highly sensitive (0% survival) and Milyang352 scored resistant (66.7% survival) 7 days after treatment. The DH lines reflected the differential phenotypic response observed in parental lines. Interestingly, we identified a novel quantitative trait locus (QTL) for chlorate resistance on chromosome 3 (qCHR-3, 136 cM, logarithm of the odds—LOD: 4.1) using Kompetitive Allele-Specific PCR (KASP) markers. The additive effect (−11.97) and phenotypic variation explained (PVE; 14.9%) indicated that the allele from Milyang352 explained the observed phenotypic variation. In addition, shoot growth showed a significant difference between parental lines, but not root growth. Moreover, in silico analysis identified candidate genes with diverse and interesting molecular and physiological functions. Therefore, this study suggested that the QTL qCHR-3 harbors promising candidate genes that could play a role in the regulation of nitrogen metabolism in rice.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Agriculture

Journal Type :   Uluslararası

Metrics
Article : 9.835
Cite : 6.420
2023 Impact : 0.04
Agriculture