Kullanım Kılavuzu
Neden sadece 3 sonuç görüntüleyebiliyorum?
Sadece üye olan kurumların ağından bağlandığınız da tüm sonuçları görüntüleyebilirsiniz. Üye olmayan kurumlar için kurum yetkililerinin başvurması durumunda 1 aylık ücretsiz deneme sürümü açmaktayız.
Benim olmayan çok sonuç geliyor?
Birçok kaynakça da atıflar "Soyad, İ" olarak gösterildiği için özellikle Soyad ve isminin baş harfi aynı olan akademisyenlerin atıfları zaman zaman karışabilmektedir. Bu sorun tüm dünyadaki atıf dizinlerinin sıkça karşılaştığı bir sorundur.
Sadece ilgili makaleme yapılan atıfları nasıl görebilirim?
Makalenizin ismini arattıktan sonra detaylar kısmına bastığınız anda seçtiğiniz makaleye yapılan atıfları görebilirsiniz.
  Atıf Sayısı 4
 Görüntüleme 19
 İndirme 1
Modeling and Trading the EUR/USD Exchange Rate Using Machine Learning Techniques
2012
Dergi:  
Engineering, Technology & Applied Science Research
Yazar:  
Özet:

Abstract The present paper aims in investigating the performance of state-of-the-art machine learning techniques in trading with the EUR/USD exchange rate at the ECB fixing. For this purpose, five supervised learning classification techniques (K-Nearest Neighbors algorithm, Naïve Bayesian Classifier, Artificial Neural Networks, Support Vector Machines and Random Forests) were applied in the problem of the one day ahead movement prediction of the EUR/USD exchange rate with only autoregressive terms as inputs. For comparison reasons, the performance of all machine learning techniques was benchmarked by two traditional techniques (Naïve  Strategy and moving average convergence/divergence model). Trading strategies produced by the machine learning techniques of Support Vector Machines and Random Forests clearly outperformed all other strategies in terms of annualized return and sharp ratio. To the best of our knowledge, this is the first application of Random Forests in the problem of trading with the EUR/USD exchange rate providing extremely satisfactory results.

Anahtar Kelimeler:

0
2012
Yazar:  
Atıf Yapanlar
Dikkat!
Yayınların atıflarını görmek için Sobiad'a Üye Bir Üniversite Ağından erişim sağlamalısınız. Kurumuzun Sobiad'a üye olması için Kütüphane ve Dokümantasyon Daire Başkanlığı ile iletişim kurabilirsiniz.
Kampüs Dışı Erişim
Eğer Sobiad Abonesi bir kuruma bağlıysanız kurum dışı erişim için Giriş Yap Panelini kullanabilirsiniz. Kurumsal E-Mail adresiniz ile kolayca üye olup giriş yapabilirsiniz.
Benzer Makaleler








Engineering, Technology & Applied Science Research

Dergi Türü :   Uluslararası

Metrikler
Makale : 1.845
Atıf : 2.898
2023 Impact/Etki : 0.733
Engineering, Technology & Applied Science Research