User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
  Citation Number 1
 Views 14
 Downloands 3
Humic and Acetic Acids Have the Potential to Enhance Deterioration of Select Plastic Soil-Biodegradable Mulches in a Mediterranean Climate
2022
Journal:  
Agriculture
Author:  
Abstract:

: The perceived variability of plastic soil-biodegradable mulch (BDM) degradation has generated concerns about its functionality and sustainability, especially in climates and regions where biodegradation may be limited. This study evaluated the effects of surface-applied products (compost tea, dairy-based compost, humic and acetic acids) on the surface deterioration and visible degradation of three plastic BDMs (BASF 0.6, Novamont 0.6, and Novamont 0.7) and one cellulose paper mulch (WeedGuard Plus) in a Mediterranean climate. Deterioration was monitored for 10 months, and degradation was evaluated 6- and 12 months following soil incorporation. Deterioration varied between the two years of the study; however, the average deterioration for WeedGuard Plus reached 100%, BASF 0.6 and Novamont 0.6 achieved ≥80%, while Novamont 0.7 reached ≥70%. Application of humic and acetic acids increased BASF 0.6 deterioration, but only humic acid increased Novamont 0.7 deterioration. Scanning electron microscopy of mulch surfaces demonstrated evidence of microbial colonization; however, the surface-applied products did not enhance microbial counts. In-soil degradation of BDMs was inconsistent, but faster degradation occurred overall for starch- and polybutylene adipate-co-terephthalate (PBAT)-based BDMs. Future studies should continue to explore on-farm strategies to enhance in-soil degradation to meet the production system’s goals.

Keywords:

2022
Journal:  
Agriculture
Author:  
Citation Owners
Attention!
To view citations of publications, you must access Sobiad from a Member University Network. You can contact the Library and Documentation Department for our institution to become a member of Sobiad.
Off-Campus Access
If you are affiliated with a Sobiad Subscriber organization, you can use Login Panel for external access. You can easily sign up and log in with your corporate e-mail address.
Similar Articles












Agriculture

Journal Type :   Uluslararası

Metrics
Article : 9.835
Cite : 6.423
2023 Impact : 0.04
Agriculture