User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 14
 Downloands 1
Reduced limit approach to semilinear PDEs involving the fractional Laplacian with measure data
2021
Journal:  
Turkish Journal of Mathematics
Author:  
Abstract:

We study the following partial differential equation (PDE) \begin{align} \begin{split} (-\Delta)^s u + g(x,u) & = \mu\,\,\mbox{in}\,\,\Omega,\\ u & = 0\,\,\mbox{in}\,\,\mathbb{R}^N\setminus\Omega,\label{eqn_abs} \end{split} \end{align} where $(-\Delta)^s$ is the fractional Laplacian operator, $\Omega$ is a bounded domain in $\mathbb{R}^N$ with $\partial\Omega$ being the boundary of $\Omega$, $g(.,.)$ is a nonlinear function defined over $\Omega\times\mathbb{R}$. Let $(\mu_n)_n$ be a sequence of measure in $\Omega$. Assume that there exists a solution $u_n$ with data $\mu_n$, i.e. $u_n$ satisfies the equation (0.1) with $\mu=\mu_n$. We further assume that the sequence of measures weakly converges to $\mu$, while $(u_n)_n$ converges to $u$ in $L^1(\Omega)$. In general, $u$ is not a solution to the partial differential equation in (0.1) with datum $(\mu,0)$. However, there exists a measure $\mu^{\#}$ such that $u$ is a solution of the partial differential equation with this data. $\mu^{\#}$ is called the reduced limit of the sequence $(\mu_n)_n$. We investigate the relation between weak limit $\mu$ and the reduced limit $\mu^{\#}$ and the dependence of $\mu^{\#}$ to the sequence $(\mu_n)_n$. A closely related problem was studied by Bhakta and Marcus [3] and then by Giri and Choudhuri [15] but for the case of a Laplacian and a general second order linear elliptic differential operator, respectively instead of a fractional Laplacian.

Keywords:

null
2021
Author:  
0
2021
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles










Turkish Journal of Mathematics

Field :   Fen Bilimleri ve Matematik

Journal Type :   Uluslararası

Metrics
Article : 2.274
Cite : 712
2023 Impact : 0.039
Turkish Journal of Mathematics