User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 10
 Downloands 8
Monte Carlo simulation of dynamic phase transition properties of core-shell magnetic nanoparticles with similar volumes
2018
Journal:  
Turkish Journal of Physics
Author:  
Abstract:

  We implement Monte Carlo simulations to determine dynamic phase transition features of both cubical and spherical nanoparticles composed of spin-1/2 cores surrounded by a spin-1 shell layer. The particles are subjected to an oscillating magnetic field. We plan these particles such that they have similar volumes. It is observed that the nonequilibrium magnetic phase transition temperatures of the particles with similar volumes explicitly depend on their geometrical shapes as well as the system parameters. The cubic one has a higher transition temperature than the spherical one for the small interface coupling, whereas the transition temperature of the spherical particle becomes higher than that of the cubic one with further increment in antiferromagnetic coupling. We also analyze the magnetic features of the particles, such as dynamic remanence and coercivity treatments. Our simulation results suggest that the spherical particle has almost the same coercivity behavior as the cubic one for some considered system parameters. However, there are some differences in the context of remanence behaviors between spherical and cubic core-shell nanoparticles.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles








Turkish Journal of Physics

Field :   Fen Bilimleri ve Matematik

Journal Type :   Uluslararası

Metrics
Article : 1.313
Cite : 223
Turkish Journal of Physics