User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 1
ANALYSIS AND OPTIMIZATION OF VAPOR ABSORPTION GENERATOR-HEAT EXCHANGER USING KERN METHOD AND CFD
2020
Journal:  
Journal of Thermal Engineering
Author:  
Abstract:

The growing demand for new and eco-friendly energy resources has raised the need of sustainable sources or renewable energy for use in present era. A vapor absorption refrigeration system (VARS or VAS) is a closed loop refrigeration system which requires low heat for its functioning and, it is therefore, considered an eco-friendly solution. Since, generator is the main component of VAS which can significantly influence the efficacy of overall system, the current paper involves modeling and thermal analysis of generator using Computational Fluid Dynamics (CFD). The objective of this study is to optimize the heat transfer by changing baffle spacing of generator heat exchanger, running on a single effect LiBr/ water absorption cycle. For this purpose, hot water driven generator of 1ton capacity is taken. The simulation results of CFD were validated by comparing them with theoretical results. The overall design estimation and design technique that follows Birmingham Wire Gauge (BWG) and Tubular Exchangers Manufacturers Association (TEMA) standard are considered in this study. It was found from the analysis that the design model with smallest baffle spacing has the highest heat transfer coefficient. On reducing the baffle spacing from 137mm to 101mm, an increment of 48% in overall heat transfer coefficient was observed. Likewise, an increase in velocity by 36% and drop in static pressure by 27% were seen. Similar trend was observed in the theoretical results.

Keywords:

0
2020
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles










Journal of Thermal Engineering

Field :   Mühendislik

Journal Type :   Uluslararası

Metrics
Article : 493
Cite : 243
2023 Impact : 0.05
Journal of Thermal Engineering