User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 20
 Downloands 1
Remote Detection of Large-Area Crop Types: The Role of Plant Phenology and Topography
2019
Journal:  
Agriculture
Author:  
Abstract:

Sustainable agricultural practices necessitate accurate baseline data of crop types and their detailed spatial distribution. Compared with field surveys, remote sensing has demonstrated superior performance, offering spatially explicit crop distribution in a timely manner. Recent studies have taken advantage of remote sensing time series to capture the variation in plant phenology, inferring major crop types. However, such an approach was rarely used to extract detailed, multiple crop types spanning a large area, and the impact of topography has yet to be well analyzed in mountainous regions. This study aims to answer two questions in crop type extraction: (i) Is it feasible to accurately map multiple crop types over a large mountainous area with phenology-based modeling? (ii) What are the effects of topography in such modeling? To answer the questions, phenological metrics were extracted from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite time series, and the random forests classifier was used to map 12 crop types in South China (236,700 km2), featuring a subtropical monsoon climate and high topographic variation. Our study revealed promising results using MODIS EVI (Enhanced Vegetation Index) and NDVI (Normalized Difference Vegetation Index) time series, although EVI outperformed NDVI (overall accuracy: 85% versus 81%). The spectral and temporal metrics of plant phenology significantly contributed to crop identification, where the spectral information exhibited greater importance. The increase of slope led to a decrease in model accuracy in general. However, uniformly distributed tree plantations (e.g., tea-oil camellia, gum, and tea trees) being cultivated on large slopes (>15 degrees) achieved accuracies greater than 80%.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles










Agriculture

Journal Type :   Uluslararası

Metrics
Article : 9.835
Cite : 6.423
2023 Impact : 0.04
Agriculture