User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 19
 Downloands 3
A novel tri-generation energy system integrating solar energy and industrial waste heat
2021
Journal:  
Journal of Thermal Engineering
Author:  
Abstract:

ABSTRACTGlobal warming has forced researchers to find an alternative for fossil fuels and to enhance the energy efficiency of processes in industries. Waste heat recovery has a significant potential to reduce fossil fuel consumption and energy performance enhancement. The study cycle is a tri-generation system, heating, electrical power, that can capture carbon dioxide gas. The sys-tem works with the solar energy and waste heat of the cement plant. In this study, a model for a completely new system has been developed based on renewable energies. Thermodynamic analysis for the energy system is performed, and the system is based on the organic Rankine cycle, absorption chiller, solar energy, and waste heat recovery from the exhaust gases of the cement plant stacks. The results of the analysis showed that the energy and exergy efficiencies were calculated to be 35.78% and 12.77%, respectively, and the total exergy destruction was calculated 277327 kW. Also, the optimisation result with the direct algorithm method with the objective function of exergy efficiency improved both efficiencies. In this optimisation, the ex-ergy efficiency reached 16.39% and energy efficiency was calculated 49.04%. The optimisation with the objective function of total exergy destruction decreased the value to 216813 kW, which was significantly reduced from the base state of the system; while energy and exergy efficiencies were calculated to be 54.61% and 13.85%, respectively.

Keywords:

0
2021
Author:  
Citation Owners
Information: There is no ciation to this publication.
Similar Articles








Journal of Thermal Engineering

Field :   Mühendislik

Journal Type :   Uluslararası

Metrics
Article : 493
Cite : 243
2023 Impact : 0.05
Journal of Thermal Engineering