User Guide
Why can I only view 3 results?
You can also view all results when you are connected from the network of member institutions only. For non-member institutions, we are opening a 1-month free trial version if institution officials apply.
So many results that aren't mine?
References in many bibliographies are sometimes referred to as "Surname, I", so the citations of academics whose Surname and initials are the same may occasionally interfere. This problem is often the case with citation indexes all over the world.
How can I see only citations to my article?
After searching the name of your article, you can see the references to the article you selected as soon as you click on the details section.
 Views 14
 Downloands 2
Characteristic of Glutamate Cysteine Ligase Gene and its response to the salinity and temperature stress in Chlamydomonas sp. ICE-L from Antarctica
2018
Journal:  
Turkish Journal of Botany
Author:  
Abstract:

Chlamydomonas sp. ICE-L, an Antarctic ice alga, has high tolerance ability to freezing and salinity. Glutathione (GSH) is an important small antioxidative molecule in the growth and stress responses of plants including algae. We cloned a full-length cDNA encoding glutamate cysteine ligase (ICE-LGCL), the key enzyme of GSH synthesis, from Chlamydomonas sp. ICE-L by RT-PCR and rapid amplification of cDNA ends technique (RACE). The cDNA has 2199 bp nucleotides with an open reading frame (ORF) of 1452 bp encoding a polypeptide of 453 amino acids. BLASTP algorithm results showed that ICE-LGCL shared 51%-70% amino acid sequence identity with the reported GCLs and shared the highest identity with Chlamydomonas reinhardtii. We also successfully made ICE-LGCL protein express in E. coli BL21. The optimum expression conditions are the induced reagent IPTG of 0.2 mmol/L, temperature of 37 °C, and the induced time of 4 h. The expression patterns of ICE-LGCL in mRNA by real-time PCR analysis showed that ICE-LGCL expressed under the different temperature and salinity challenges. Low temperature and low salinities stimulated the accumulation of ICE-LGCL mRNA in ICE-L cells. These results indicate that GCL might play an important role in Antarctic Chlamydomonas sp. ICE-L.

Keywords:

Citation Owners
Information: There is no ciation to this publication.
Similar Articles












Turkish Journal of Botany

Field :   Fen Bilimleri ve Matematik

Journal Type :   Uluslararası

Metrics
Article : 1.580
Cite : 9.887
2023 Impact : 0.148
Turkish Journal of Botany