Günümüzde kimlik avı yapan sahte web sitelerinin sayısı oldukça artmıştır. Bu web sitelerinin amaçları genel anlamda kişilerin, kişisel bilgilerini ele geçirerek çıkar sağlamaktır. Sosyal medya hesaplarımızdaki kimlik ve parola bilgilerimiz, alışveriş sitelerindeki kimlik ve adres bilgilerimiz bize ait kişisel bilgilerimizdir. Bu tür bilgiler istenmeyen kişilerin eline geçmesi durumunda, tahmin bile edemeyeceğimiz kötü sonuçlar doğurabilmektedir. Ayrıca online bankacılık işlemlerimiz gibi finansal işlemlerimizin önemli bir kısmını internet ortamında yapıyor olmamız bu tür sitelerden korunmamız açısından önemli bir sorun teşkil etmektedir. Bu amaçla antivürüs yazılım firmaları, tarayıcılar, arama motorları daha iyi kullanıcı hizmeti ve memnunniyet sağlamak açısından bu tür zararlı sitelerden kullanıcılarını korumak için çalışmalar yapmaktadırlar. Ayrıca sahte web sayfalarının kullanıcıların önüne gelmeden tespit edilip engellenmesi günümüz yapay zeka çalışmalarınında önemli bir çalışma alanı olmaktadır. Hergün milyarlarca insanın gezindiği internet ortamında bu sahte sitelerden korunmasının en kolay yöntemi, sahte web sayfalarının otomatik olarak tespit edilip engellenmesi olacaktır. Makine öğrenmesi sınıflandırma algoritmaları ile bir sayfaya ait bilgilere bakarak sistem tarafından otomatik olarak sahte veya gerçek olarak tespit edilmesi yapay zeka çalışmalarının sunduğu önemli avantajların başında gelmektedir. Bu çalışma ile bir web sitesi adresine ait belirlenmiş 10 özellik kullanılarak; bu adresin sahte mi, yoksa gerçek bir adres mi olduğu tespit edilmeye çalışılmaktadır. Çalışmada kullanılan veriler Machine Learning Repository (UCI)’dan alınmıştır. Verilerin analizi Çapraz Endüstri Standart Süreç Modeli(CRISP-DM) baz alınarak gerçekleştirilmiştir. Veri setinde web sitelerinin durumunu belirleyen nitelik (Class, Kimlik Avı=-1, Şüpheli=0 ve Meşru=1) olarak etiketlenmiştir. Çalışma da RStudio kullanılarak R programlama dili ile analizler yapılmıştır. Kullanılan sınıflandırma algoritmaları Rastgele Orman (RF), Destek Vektör Makineleri (SVM), J48, K-En Yakın Komşu (KNN) ve Naive Bayes algoritmalarıdır. Yapılan değerlendirmeler sonucunda Rastgele Orman algoritması ile en yüksek doğruluk performansı elde edilmiştir.
Today, the number of fake web sites that hunt identity has increased significantly. The purpose of these websites is to provide interests by capturing the personal information of persons in general. Our ID and password information on our social media accounts, our ID and address information on our shopping sites are our personal information. If such information passes into the hands of unwanted people, it can result in bad consequences that we can’t even predict. In addition, the fact that we are doing a significant part of our financial transactions on the Internet, such as our online banking transactions, is an important problem in terms of protecting us from such sites. For this purpose, antivirus software companies, browsers, search engines work to protect their users from such malicious sites in order to provide better user service and satisfaction. Furthermore, the detection and blocking of fake web pages without the user’s appearance is an important field of work in today’s artificial intelligence studies. The easiest way to protect against these false sites in the internet environment that billions of people browse daily is to automatically detect and block false web pages. Machine learning classification algorithms and the automatic detection of false or real by the system by looking at the information of a page are the main advantages of artificial intelligence studies. This study uses the 10 specific features of a website address to determine whether it is a fake address or a real address. The data used in the study was obtained from the Machine Learning Repository (UCI). The analysis of the data is based on the Cross-Industry Standard Process Model (CRISP-DM). The data set is labeled as the status of the websites (Class, Identity Hunt=-1, Suspicious=0 and Legal=1). The study was also conducted using RStudio and R programming language. The classification algorithms used are Random Forest (RF), Support Vector Machines (SVM), J48, K-The Nearest Neighbor (KNN) and Naive Bayes algorithms. The results of the assessments were achieved with the highest accuracy performance with the random forest algorithm.
Nowadays, phishing web sites have been increased. The purpose of these sites is to obtain benefits by acquiring personal information of people in general. Our identity and password information in our social media accounts and identity and address information on shopping sites are our personal information. If such information is received by unwanted people, it can have bad unpredictable consequences. In addition, the fact that we carry out a significant portion of our financial transactions such as our online banking transactions on the internet constitutes an important problem in terms of protection from such sites. For this purpose, antivirus software companies, browsers, search engines are working to protect users from such harmful sites in terms of providing better user service and satisfaction. In addition, the detection and prevention of fake web pages before the users is an important area of work in today's artificial intelligence studies. The easiest method of protecting these fraudulent sites in the internet environment where billions of people are browsing every day will be to detect and block fake web pages automatically. Machine learning classification algorithms are automatically identified as fake or real by the system by looking at the information of a page and this is one of the important advantages offered by artificial intelligence studies. With this study, using 10 properties determined for a website address; it is attempted to determine whether this address is a fake or a real address. The data used in this study were taken from Machine Learning Repository (UCI). Data analysis was performed based on the Cross Industry Standard Process Model (CRISP-DM). In the data set, it is labeled as the attribute that determines the status of websites (Class, Phishing = -1, Suspicious = 0 and Legitimate = 1). The study was also done by using RStudio analysis with R programming language. The classification algorithms used are Random Forest (RF), Support Vector Machines (SVM), J48, K-Nearest Neighbor (KNN) and Naive Bayes algorithms. The highest accuracy performance was obtained by Random Forest algorithm.